This book provides an overview of constructing advanced Autonomous Driving Maps. It includes coverage of such methods as: fusion target perception (based on vehicle vision and millimeter wave radar), cross-field of view object perception, vehicle motion recognition (based on vehicle road fusion information), vehicle trajectory prediction (based on improved hybrid neural network) and the driving map construction method driven by road perception fusion. An Autonomous Driving Map is used for optimization of not only for a single vehicle, but also for the entire traffic system.
This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.
This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.
This two-volume set, LNAI 11012 and 11013, constitutes the thoroughly refereed proceedings of the 15th Pacific Rim Conference on Artificial Intelligence, PRICAI 2018, held in Nanjing, China, in August 2018. The 82 full papers and 58 short papers presented in these volumes were carefully reviewed and selected from 382 submissions. PRICAI covers a wide range of topics such as AI theories, technologies and their applications in the areas of social and economic importance for countries in the Pacific Rim.
This comprehensive handbook covers Geospatial Artificial Intelligence (GeoAI), which is the integration of geospatial studies and AI machine (deep) learning and knowledge graph technologies. It explains key fundamental concepts, methods, models, and technologies of GeoAI, and discusses the recent advances, research tools, and applications that range from environmental observation and social sensing to natural disaster responses. As the first single volume on this fast-emerging domain, Handbook of Geospatial Artificial Intelligence is an excellent resource for educators, students, researchers, and practitioners utilizing GeoAI in fields such as information science, environment and natural resources, geosciences, and geography. Features Provides systematic introductions and discussions of GeoAI theory, methods, technologies, applications, and future perspectives Covers a wide range of GeoAI applications and case studies in practice Offers supplementary materials such as data, programming code, tools, and case studies Discusses the recent developments of GeoAI methods and tools Includes contributions written by top experts in cutting-edge GeoAI topics This book is intended for upper-level undergraduate and graduate students from different disciplines and those taking GIS courses in geography or computer sciences as well as software engineers, geospatial industry engineers, GIS professionals in non-governmental organizations, and federal/state agencies who use GIS and want to learn more about GeoAI advances and applications.
The subject of this book is artificial intelligence (AI), introducing the fast road sensing algorithm and system based on image pattern recognition for unmanned vehicle, especially for traffic sign recognition and complex road recognition. With rich figures and credible data, this book systematically and comprehensively describes the core technology and industrialization focus of today's unmanned vehicle system, which can be used as a reference for R & D Engineers and industrialization practitioners of unmanned vehicle, and it can also be used as a teaching material for higher grades and postgraduates in colleges and universities.
This two-volume set of CCIS 391 and CCIS 392 constitutes the refereed proceedings of the Fourth International Conference on Information Computing and Applications, ICICA 2013, held in Singapore, in August 2013. The 126 revised full papers presented in both volumes were carefully reviewed and selected from 665 submissions. The papers are organized in topical sections on Internet computing and applications; engineering management and applications; intelligent computing and applications; control engineering and applications; cloud and evolutionary computing; knowledge management and applications; computational statistics and applications.
A timely introduction to the revolutionary technologies reshaping the global energy market The search for more efficient and sustainable ways to meet society’s energy requirements has driven recent technological innovation on an unprecedented scale. The energy needs of a growing population coupled with concerns about climate change have posed unique challenges that necessitate novel energy technologies . The transition of modern energy grids towards multi-energy networks, or MENs, promises to be a fundamental transformation in the way we energize our world. Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems presents an overview of the foundational methodologies and technologies underlying MENs and the groundbreaking vehicle systems that bring them together. With the inclusion of transformative technologies from radically different sectors, the content covered in this book will be of high value for researchers interested in future energy systems. Readers will also find: In-depth examination of the process of switching from conventional transportation systems to modern intelligent transportation ones Detailed discussions of topics including self-driving vehicles, hybrid energy technologies, grid-edge, and more The introduction of a holistic, reconfigurable system adaptable to vastly different conditions and forms of network interaction Interconnected Modern Multi-Energy Networks and Intelligent Transportation Systems is useful for researchers in electrical, mechanical, civil, architectural, or environmental engineering, as well as for telecommunications researchers and for any industry professionals with an interest in energy transportation.