Constructal Theory of Social Dynamics brings together for the first time social scientists and engineers who present predictive theory of social organization, as a conglomerate of mating flows that morph in time to flow more easily. The book offers a new way to look at social phenomena as part of natural phenomena, and examines a new domain of application of engineering such as thermodynamic optimization, thermoeconomics and "design as science".
In this groundbreaking book, Adrian Bejan takes the recurring patterns in nature—trees, tributaries, air passages, neural networks, and lightning bolts—and reveals how a single principle of physics, the constructal law, accounts for the evolution of these and many other designs in our world. Everything—from biological life to inanimate systems—generates shape and structure and evolves in a sequence of ever-improving designs in order to facilitate flow. River basins, cardiovascular systems, and bolts of lightning are very efficient flow systems to move a current—of water, blood, or electricity. Likewise, the more complex architecture of animals evolve to cover greater distance per unit of useful energy, or increase their flow across the land. Such designs also appear in human organizations, like the hierarchical “flowcharts” or reporting structures in corporations and political bodies. All are governed by the same principle, known as the constructal law, and configure and reconfigure themselves over time to flow more efficiently. Written in an easy style that achieves clarity without sacrificing complexity, Design in Nature is a paradigm-shifting book that will fundamentally transform our understanding of the world around us.
Constructal theory has been extensively used to analyze and optimize many different shapes and structures in both living and non-living systems. It is generally considered to be a law that could govern the evolutions of shapes and structures in biology, physics, technology, and social organization. Accordingly, it seems that the constructal method is suitable for designing and analyzing all kinds of shapes and structures in the world. However, in most cases, the details for its applications were not carefully checked, meaning that it was often incorrectly applied, and that many unreasonable or inaccurate results were provided. This book systematically reviews and checks the applications of constructal theory in street design, economics, heat transfer optimization, flow systems, and explanations of natural structures and social phenomena. Every detail of the models, methods, optimizations, applications, results and conclusions is analysed, with careful consideration of theoretical derivations and typical examples. Accordingly, the problems and mistakes in the applications of the theory are directly pointed out and discussed in detail. The abuse and limitation of the constructal approach are also discussed. In many cases, it is shown that the theory has significant flaws and is even not applicable in certain circumstances. As constructal theory is widely used in the analysis and design of shapes and structures, this book will be essential for scientists, researchers, engineers, teachers, postgraduates and undergraduates in the fields of structure analysis, design and optimization in physics, biology, flow dynamics, heat transfer and thermodynamics.
Globalization, security infrastructure and energy sustainability can be designed based on a scientific principle. This book approaches these objectives based on constructal theory, which means to design such projects as global 'flow' architectures that are 'alive' with movement of personnel, equipment, information, and education."
Design course on the universal principle of configurations in nature and engineering-the constructal law Design with Constructal Theory offers a revolutionary new approach based on physics for understanding and predicting the designs that arise in nature and engineering, from the tree and the forest to the cooling of electronics, urban design, decontamination, and vascular smart materials. This book shows how you can use the method of constructal theory to design human-made systems in order to reduce trial and error and increase the system performance. First developed in the late 1990s, constructal theory holds that flow architecture arises from the natural evolutionary tendency to generate greater flow access in time and in flow configurations that are free to morph. It unites flow systems with solid mechanical structures, which are viewed as systems for the flow of stresses. Constructal theory unites nature with engineering, and helps us generate novel designs across the board, from high-density packages to vascular materials with new functionalities (self-healing, self-cooling), and from tree-shaped heat exchangers to svelte fluid-flow and solid structures. Design with Constructal Theory starts with basic principles and then shows how these principles are applied to understanding and designing increasingly complex systems. Problems and exercises at the end of each chapter give you an opportunity to use constructal theory to solve actual design problems. This book is based on a design course developed by the two authors for upper-level undergraduates and graduate students at Duke University and other universities all over the world. With the authors' expert guidance, students and professionals in mechanical, civil, environmental, chemical, aerospace, and biomedical engineering will understand natural systems, and then practice design as science, by relying on constructal strategies to pursue and discover novel and effective designs.
Design happens everywhere, whether in animate objects (e.g., dendritic lung structures, bacterial colonies, and corals), inanimate patterns (river basins, beach slope, and dendritic crystals), social dynamics (pedestrian traffic flows), or engineered systems (heat dissipation in electronic circuitry). This “design in nature” often takes on remarkably similar patterns, which can be explained under one unifying Constructal Law. This book explores the unifying power of the Constructal Law and its applications in all domains of design generation and evolution, ranging from biology and geophysics to globalization, energy, sustainability, and security. The Constructal Law accounts for the universal tendency of flow systems to morph into evolving configurations that provide greater and easier access over time. The Constructal Law resolves the many and contradictory ad hoc statements of “optimality”, end design, and destiny in nature, such as minimum and maximum entropy production and minimum and maximum flow resistance, and also explains the designs that are observed and copied in biomimetics. Constructal Law and the Unifying Principle of Design covers the fundamentals of Constructal Theory and Design, as well as presenting a variety of state-of-the-art applications. Experts from the biological, physical and social sciences demonstrate the unification of all design phenomena in nature, and apply this knowledge to novel designs in modern engineering, such as vascularization for self-healing and self-cooling materials for aircraft, and tree fins and cavities for heat transfer enhancement.
The book begins with familiar designs found all around and inside us (such as the ‘trees’ of river basins, human lungs, blood and city traffic). It then shows how all flow systems are driven by power from natural engines everywhere, and how they are endlessly shaped because of freedom. Finally, Professor Bejan explains how people, like everything else that moves on earth, are driven by power derived from our “engines” that consume fuel and food, and that our movement dissipates the power completely and changes constantly for greater access, economies of scale, efficiency, innovation and life. Written for wide audiences of all ages, including readers interested in science, patterns in nature, similarity and non-uniformity, history and the future, and those just interested in having fun with ideas, the book shows how many “design change” concepts acquire a solid scientific footing and how they exist with the evolution of nature, society, technology and science.
Single and two-phase flows are ubiquitous in most natural process and engineering systems. Examples of systems or process include, packed bed reactors, either single phase or multiphase, absorber and adsorber separation columns, filter beds, plate heat exchangers, flow of viscoelastic fluids in polymer systems, or the enhanced recovery of oil, among others. In each case the flow plays a central role in determining the system or process behavior and performance. A better understanding of the underlying physical phenomena and the ability to describe the phenomena properly are both crucial to improving design, operation and control processes involving the flow of fluids, ensuring that they will be more efficient and cost effective. Expanding disciplines such as microfluidics and the simulation of complex flow physical systems, such as blood flow in physiological networks, also rely heavily on accurate predictions of fluid flow. Recent advances either in computational and experimental techniques are improving the existing knowledge of single and multiphase flows in engineering and physical systems of interest. This ebook is a review on the state-of-the-art and recent advances in critical areas of fluid mechanics and transport phenomena with respect to chemical and biomedical engineering applications.
Intends to assemble a set of essays that invent, develop, and/or demonstrate strategies for theorizing one or several dynamic processes, so as to identify, illustrate by example, and analyze specific problems as well as connect theorizations of process across different disciplines of inquiry.