This book offers recent advances in the theory of implied volatility and refined semiparametric estimation strategies and dimension reduction methods for functional surfaces. The first part is devoted to smile-consistent pricing approaches. The second part covers estimation techniques that are natural candidates to meet the challenges in implied volatility surfaces. Empirical investigations, simulations, and pictures illustrate the concepts.
In Advanced Equity Derivatives: Volatility and Correlation, Sébastien Bossu reviews and explains the advanced concepts used for pricing and hedging equity exotic derivatives. Designed for financial modelers, option traders and sophisticated investors, the content covers the most important theoretical and practical extensions of the Black-Scholes model. Each chapter includes numerous illustrations and a short selection of problems, covering key topics such as implied volatility surface models, pricing with implied distributions, local volatility models, volatility derivatives, correlation measures, correlation trading, local correlation models and stochastic correlation. The author has a dual professional and academic background, making Advanced Equity Derivatives: Volatility and Correlation the perfect reference for quantitative researchers and mathematically savvy finance professionals looking to acquire an in-depth understanding of equity exotic derivatives pricing and hedging.
The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.
Packed with insights, Lorenzo Bergomi's Stochastic Volatility Modeling explains how stochastic volatility is used to address issues arising in the modeling of derivatives, including:Which trading issues do we tackle with stochastic volatility? How do we design models and assess their relevance? How do we tell which models are usable and when does c
The Volatility Smile The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets. The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models. Topics covered include: The principles of valuation Static and dynamic replication The Black-Scholes-Merton model Hedging strategies Transaction costs The behavior of the volatility smile Implied distributions Local volatility models Stochastic volatility models Jump-diffusion models The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.
Pricing Models of Volatility Products and Exotic Variance Derivatives summarizes most of the recent research results in pricing models of derivatives on discrete realized variance and VIX. The book begins with the presentation of volatility trading and uses of variance derivatives. It then moves on to discuss the robust replication strategy of variance swaps using portfolio of options, which is one of the major milestones in pricing theory of variance derivatives. The replication procedure provides the theoretical foundation of the construction of VIX. This book provides sound arguments for formulating the pricing models of variance derivatives and establishes formal proofs of various technical results. Illustrative numerical examples are included to show accuracy and effectiveness of analytic and approximation methods. Features Useful for practitioners and quants in the financial industry who need to make choices between various pricing models of variance derivatives Fabulous resource for researchers interested in pricing and hedging issues of variance derivatives and VIX products Can be used as a university textbook in a topic course on pricing variance derivatives
Praise for The Volatility Surface "I'm thrilled by the appearance of Jim Gatheral's new book The Volatility Surface. The literature on stochastic volatility is vast, but difficult to penetrate and use. Gatheral's book, by contrast, is accessible and practical. It successfully charts a middle ground between specific examples and general models--achieving remarkable clarity without giving up sophistication, depth, or breadth." --Robert V. Kohn, Professor of Mathematics and Chair, Mathematical Finance Committee, Courant Institute of Mathematical Sciences, New York University "Concise yet comprehensive, equally attentive to both theory and phenomena, this book provides an unsurpassed account of the peculiarities of the implied volatility surface, its consequences for pricing and hedging, and the theories that struggle to explain it." --Emanuel Derman, author of My Life as a Quant "Jim Gatheral is the wiliest practitioner in the business. This very fine book is an outgrowth of the lecture notes prepared for one of the most popular classes at NYU's esteemed Courant Institute. The topics covered are at the forefront of research in mathematical finance and the author's treatment of them is simply the best available in this form." --Peter Carr, PhD, head of Quantitative Financial Research, Bloomberg LP Director of the Masters Program in Mathematical Finance, New York University "Jim Gatheral is an acknowledged master of advanced modeling for derivatives. In The Volatility Surface he reveals the secrets of dealing with the most important but most elusive of financial quantities, volatility." --Paul Wilmott, author and mathematician "As a teacher in the field of mathematical finance, I welcome Jim Gatheral's book as a significant development. Written by a Wall Street practitioner with extensive market and teaching experience, The Volatility Surface gives students access to a level of knowledge on derivatives which was not previously available. I strongly recommend it." --Marco Avellaneda, Director, Division of Mathematical Finance Courant Institute, New York University "Jim Gatheral could not have written a better book." --Bruno Dupire, winner of the 2006 Wilmott Cutting Edge Research Award Quantitative Research, Bloomberg LP
This book contains contributions by the best-known and consequential researchers who, over several decades, shaped the field of financial engineering. It presents a comprehensive and unique perspective on the historical development and the current state of derivatives research. The book covers classical and modern approaches to option pricing, realized and implied volatilities, classical and rough stochastic processes, and contingent claims analysis in corporate finance. The book is invaluable for students, academic researchers, and practitioners working with financial derivatives, market regulation, trading, risk management, and corporate decision-making.