At a time when many older facilities are being decommissioned and many more are undergoing major retrofits to extend their lives, there is a wealth of information emerging to guide the design of new facilities. In this publication, the most important lessons learned in recent years are examined.
Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
This report identifies and outlines issues for consideration during the design and operation of nuclear facilities to minimize waste generation, facilitate future decommissioning and optimize management of decommissioning waste and material. It is aimed at the broad range of experts involved in the planning, design, construction and operation of new nuclear facilities or the modification of existing facilities. The principles discussed are applicable to all types and classes of nuclear facility dealing with radioactive material. While plant designs will continue to mature and evolve, the waste minimization options identified here will remain relevant to all new facilities and can be used as a checklist during the design, licensing and operational phases of new plants or the modification of existing plants.
Nuclear Waste Management Facilities: Advances, Environmental Impacts, and Future Prospects examines best practices and recent trends in improving nuclear safety and reducing the negative environmental impacts of nuclear waste. With strong emphasis on regulatory requirements, this reference is essential for designing new integrated waste management practices, using lessons learned from historical and current practices. Divided into three key sections, Part One introduces the reader to the safety and environmental impacts of the nuclear industry. Part Two reviews recent technological and methodological approaches to enhancing safety, as well as reducing the carbon footprint of both individual processes and integrated facilities. Topics covered include waste processing, transmutation and decommissioning. Part Three consider potential management schemes for special waste from innovative sources, and wastes that contain emerging contaminants, including waste recycling opportunities. Nuclear Waste Management Facilities: Advances, Environmental Impacts, and Future Prospects is a crucial tool needed to implement the safest and most environmentally considerate best practices within nuclear waste management facilities. - Presents recent approaches used to assess and improve the safety and reduce the environmental impacts of nuclear waste management facilities - Offers technical guidance to support the development and defense of the environmental impact assessment (EIA) and Safety Cases to support the waste management facilities licensing throughout their lifecycles - Highlights the future perspectives for wastes produced from innovative reactors and wastes containing emerging contaminants, and recycling opportunities
This report sets out the costs of operating disposal sites for LLW in OECD countries, as well as the factors that may affect the costs of sites being developed.
Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.
This Safety Guide provides recommendations on how to meet safety requirements on the disposal of radioactive waste. It is concerned with the disposal of solid radioactive waste by emplacement in designated facilities at or near the land surface. The Safety Guide provides guidance on the development, operation and closure of, and on the regulatory control of, near surface disposal facilities, which are suitable for the disposal of very low level waste and low level waste. The Safety Guide provides guidance on a range of disposal methods, including the emplacement of solid radioactive waste in earthen trenches, in above ground engineered structures, in engineered structures just below the ground surface and in rock caverns, silos and tunnels excavated at depths of up to a few tens of metres underground. It is intended for use primarily by those involved with policy development for, with the regulatory control of, and with the development and operation of near surface disposal facilities.