Connections in Discrete Mathematics

Connections in Discrete Mathematics

Author: Steve Butler

Publisher: Cambridge University Press

Published: 2018-06-14

Total Pages: 367

ISBN-13: 1107153980

DOWNLOAD EBOOK

Many of the best researchers and writers in discrete mathematics come together in a volume inspired by Ron Graham.


Connecting Discrete Mathematics and Computer Science

Connecting Discrete Mathematics and Computer Science

Author: David Liben-Nowell

Publisher: Cambridge University Press

Published: 2022-08-04

Total Pages: 694

ISBN-13: 1009174746

DOWNLOAD EBOOK

Computer science majors taking a non-programming-based course like discrete mathematics might ask 'Why do I need to learn this?' Written with these students in mind, this text introduces the mathematical foundations of computer science by providing a comprehensive treatment of standard technical topics while simultaneously illustrating some of the broad-ranging applications of that material throughout the field. Chapters on core topics from discrete structures – like logic, proofs, number theory, counting, probability, graphs – are augmented with around 60 'computer science connections' pages introducing their applications: for example, game trees (logic), triangulation of scenes in computer graphics (induction), the Enigma machine (counting), algorithmic bias (relations), differential privacy (probability), and paired kidney transplants (graphs). Pedagogical features include 'Why You Might Care' sections, quick-reference chapter guides and key terms and results summaries, problem-solving and writing tips, 'Taking it Further' asides with more technical details, and around 1700 exercises, 435 worked examples, and 480 figures.


Discrete Mathematics

Discrete Mathematics

Author: Oscar Levin

Publisher: Createspace Independent Publishing Platform

Published: 2016-08-16

Total Pages: 342

ISBN-13: 9781534970748

DOWNLOAD EBOOK

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.


Discrete Mathematics Using a Computer

Discrete Mathematics Using a Computer

Author: John O'Donnell

Publisher: Springer Science & Business Media

Published: 2007-01-04

Total Pages: 446

ISBN-13: 1846285984

DOWNLOAD EBOOK

Computer science abounds with applications of discrete mathematics, yet s- dents of computer science often study discrete mathematics in the context of purely mathematical applications. They have to ?gure out for themselves how to apply the ideas of discrete mathematics to computing problems. It is not easy. Most students fail to experience broad success in this enterprise, which is not surprising, since many of the most important advances in science and engineeringhavebeen, precisely, applicationsofmathematicstospeci?cscience and engineering problems. Tobesure,mostdiscretemathtextbooksincorporatesomeaspectsapplying discrete math to computing, but it usually takes the form of asking students to write programs to compute the number of three-ball combinations there are in a set of ten balls or, at best, to implement a graph algorithm. Few texts ask students to use mathematical logic to analyze properties of digital circuits or computer programs or to apply the set theoretic model of functions to understand higher-order operations. A major aim of this text is to integrate, tightly, the study of discrete mathematics with the study of central problems of computer science.


Discrete Structures and Their Interactions

Discrete Structures and Their Interactions

Author: Jason I. Brown

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 214

ISBN-13: 1466579420

DOWNLOAD EBOOK

Discover the Connections between Different Structures and FieldsDiscrete Structures and Their Interactions highlights the connections among various discrete structures, including graphs, directed graphs, hypergraphs, partial orders, finite topologies, and simplicial complexes. It also explores their relationships to classical areas of mathematics,


Discrete Mathematics for Computer Science

Discrete Mathematics for Computer Science

Author: David Liben-Nowell

Publisher: Wiley

Published: 2017-09-05

Total Pages: 0

ISBN-13: 9781118065532

DOWNLOAD EBOOK

Written exclusively with computer science students in mind, Discrete Mathematics for Computer Science provides a comprehensive treatment of standard course topics for the introductory discrete mathematics course with a strong emphasis on the relationship between the concepts and their application to computer science. The book has been crafted to enhance teaching and learning ease and includes a wide selection of exercises, detailed exploration problems, examples and problems inspired by wide-ranging applications of computer science and handy quick reference guides for key technical topics throughout. Discrete Mathematics for Computer Science provides a lucidly written introduction to discrete mathematics with abundant support for learning, including over 450 examples, thorough chapter summaries, simple quizzes, and approximately 1600 homework exercises of widely varying difficulty. Each chapter begins with motivational content that relates the chapter topic to computer science practice and the book also includes over fifty "Computer Science Connections" which discuss applications to computer science such as Rotation Matrices; Game Trees, Logic, and Winning Tic-Tac(-Toe); Moore's Law; Secret Sharing; The Enigma Machine and the First Computer; Bayesian Modeling and Spam Filtering; and Quantum Computing.


Discrete Mathematics

Discrete Mathematics

Author: Jean Gallier

Publisher: Springer Science & Business Media

Published: 2011-02-01

Total Pages: 473

ISBN-13: 1441980474

DOWNLOAD EBOOK

This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.


Introduction to Discrete Mathematics via Logic and Proof

Introduction to Discrete Mathematics via Logic and Proof

Author: Calvin Jongsma

Publisher: Springer Nature

Published: 2019-11-08

Total Pages: 496

ISBN-13: 3030253589

DOWNLOAD EBOOK

This textbook introduces discrete mathematics by emphasizing the importance of reading and writing proofs. Because it begins by carefully establishing a familiarity with mathematical logic and proof, this approach suits not only a discrete mathematics course, but can also function as a transition to proof. Its unique, deductive perspective on mathematical logic provides students with the tools to more deeply understand mathematical methodology—an approach that the author has successfully classroom tested for decades. Chapters are helpfully organized so that, as they escalate in complexity, their underlying connections are easily identifiable. Mathematical logic and proofs are first introduced before moving onto more complex topics in discrete mathematics. Some of these topics include: Mathematical and structural induction Set theory Combinatorics Functions, relations, and ordered sets Boolean algebra and Boolean functions Graph theory Introduction to Discrete Mathematics via Logic and Proof will suit intermediate undergraduates majoring in mathematics, computer science, engineering, and related subjects with no formal prerequisites beyond a background in secondary mathematics.


Discrete Mathematics for Computer Science

Discrete Mathematics for Computer Science

Author: Gary Haggard

Publisher: Cengage Learning

Published: 2006

Total Pages: 0

ISBN-13: 9780534495015

DOWNLOAD EBOOK

Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career.


Discrete Mathematics in Statistical Physics

Discrete Mathematics in Statistical Physics

Author: Martin Loebl

Publisher: Springer Science & Business Media

Published: 2010-02-16

Total Pages: 187

ISBN-13: 3834893293

DOWNLOAD EBOOK

The book first describes connections between some basic problems and technics of combinatorics and statistical physics. The discrete mathematics and physics terminology are related to each other. Using the established connections, some exciting activities in one field are shown from a perspective of the other field. The purpose of the book is to emphasize these interactions as a strong and successful tool. In fact, this attitude has been a strong trend in both research communities recently. It also naturally leads to many open problems, some of which seem to be basic. Hopefully, this book will help making these exciting problems attractive to advanced students and researchers.