Connectionist Models in Cognitive Psychology is a state-of-the-art review of neural network modelling in core areas of cognitive psychology including: memory and learning, language (written and spoken), cognitive development, cognitive control, attention and action. The chapters discuss neural network models in a clear and accessible style, with an emphasis on the relationship between the models and relevant experimental data drawn from experimental psychology, neuropsychology and cognitive neuroscience. These lucid high-level contributions will serve as introductory articles for postgraduates and researchers whilst being of great use to undergraduates with an interest in the area of connectionist modelling.
Bringing together contributions in biology, neuroscience, computer science, physics, and psychology, this book offers a solid tutorial on current research activity in connectionist-inspired biology-based modeling. It describes specific experimental approaches and also confronts general issues related to learning associative memory, and sensorimotor development. Introductory chapters by editors Hanson and Olson, along with Terrence Sejnowski, Christof Koch, and Patricia S. Churchland, provide an overview of computational neuroscience, establish the distinction between "realistic" brain models and "simplified" brain models, provide specific examples of each, and explain why each approach might be appropriate in a given context. The remaining chapters are organized so that material on the anatomy and physiology of a specific part of the brain precedes the presentation of modeling studies. The modeling itself ranges from simplified models to more realistic models and provides examples of constraints arising from known brain detail as well as choices modelers face when including or excluding such constraints. There are three sections, each focused on a key area where biology and models have converged. Stephen Jose Hanson is Member of Technical Staff, Bellcore, and Visiting Faculty, Cognitive Science Laboratory, Princeton University. Carl R. Olson is Assistant Professor, Department of Psychology at Princeton Connectionist Modeling and Brain Functionis included in the Network Modeling and Connectionism series, edited by Jeffrey Elman.
Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble
In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.
Describes the principles of connectionist modelling, and its application in understanding how the brain produces speech, forms memories, recognizes faces, and how intellect develops and deteriorates after brain damage.
1. Introdudion This volume collects together the refereed versions of 25 papers presented at the 5th Neural Computation and Psychology Workshop (NCPW5), held at the University of Birmingham from the 8th until the lOth of September 1998. The NCPW is a well-established, lively forum, which brings together researchers from a range of disciplines (artificial intelligence, mathematics, cognitive science, computer science, neurobiology, philosophy and psychology), all of whom are interested in the application of neurally-inspired (connectionist) models to topics in psychology. The theme of the 5th workshop in the series was Connectionist models in cognitive neuroscience', and the workshop aimed to bring together papers focused on the inter-relations between functional (psychological) accounts of cognition and neural accounts of underlying brain processes, linked by connectionist models. From the very beginnings of modern psychology, with the work of William James and his contemporaries, researchers have believed it important to relate behavioural analyses to neurological underpinnings. However, with the advent of connectionist modelling, where models are at least inspired by neuronal processes, this enterprise has received a new boost. With this volume, we hope that this volume adds one further mosaic stone to this ambitious objective, of unifying functional and neuronal accounts of performance.
Research on connectionist models is one of the most exciting areas in cognitive science, and neural network models of psychopathology have immediate theoretical and empirical appeal. The contributors to this pioneering book review theoretical, historical and clinical issues, including the contribution of neural network models to diagnosis, pharmacotherapy, and psychotherapy. The text presents models for a range of disorders, including schizophrenia, obsessive-compulsive disorder, disassociative phenomena, autism, and Alzheimer's disease. This volume will be read with interest by psychiatrists, psychologists and other clinicians and researchers in psychopathology. Additionally, it will appeal to those working in the fields of cognitive science and artificial intelligence, and particularly those interested in neural network or connectionist models.
Rethinking Innateness asks the question, "What does it really mean to say that a behavior is innate?" The authors describe a new framework in which interactions, occurring at all levels, give rise to emergent forms and behaviors. These outcomes often may be highly constrained and universal, yet are not themselves directly contained in the genes in any domain-specific way. One of the key contributions of Rethinking Innateness is a taxonomy of ways in which a behavior can be innate. These include constraints at the level of representation, architecture, and timing; typically, behaviors arise through the interaction of constraints at several of these levels.The ideas are explored through dynamic models inspired by a new kind of "developmental connectionism," a marriage of connectionist models and developmental neurobiology, forming a new theoretical framework for the study of behavioral development. While relying heavily on the conceptual and computational tools provided by connectionism, Rethinking Innateness also identifies ways in which these tools need to be enriched by closer attention to biology.
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.