Connectionism and the Mind provides a clear and balanced introduction to connectionist networks and explores theoretical and philosophical implications. Much of this discussion from the first edition has been updated, and three new chapters have been added on the relation of connectionism to recent work on dynamical systems theory, artificial life, and cognitive neuroscience. Read two of the sample chapters on line: Connectionism and the Dynamical Approach to Cognition: http://www.blackwellpublishing.com/pdf/bechtel.pdf Networks, Robots, and Artificial Life: http://www.blackwellpublishing.com/pdf/bechtel2.pdf
This series will include monographs and collections of studies devoted to the investigation and exploration of knowledge, information and data processing systems of all kinds, no matter whether human, (other) animal, or machine. Its scope is intended to span the full range of interests from classical problems in the philosophy of mind and philosophical psychology through issues in cognitive psychology and sociobiology (concerning the mental capabilities of other species) to ideas related to artificial intelligence and to computer science. While primary emphasis will be placed upon theoretical, conceptual and epistemological aspects of these problems and domains, empirical, experimental and methodological studies will also appear from time to time. One of the most, if not the most, exciting developments within cognitive science has been the emergence of connectionism as an alternative to the computational conception of the mind that tends to dominate the discipline. In this volume, John Tienson and Terence Horgan have brought together a fine collection of stimulating studies on connectionism and its significance. As the Introduction explains, the most pressing questions concern whether or not connectionism can provide a new conception of the nature of mentality. By focusing on the similarities and differences between connectionism and other approaches to cognitive science, the chapters of this book supply valuable resources that advance our understanding of these difficult issues. J.H.F.
In The Algebraic Mind, Gary Marcus attempts to integrate two theories about how the mind works, one that says that the mind is a computer-like manipulator of symbols, and another that says that the mind is a large network of neurons working together in parallel. Resisting the conventional wisdom that says that if the mind is a large neural network it cannot simultaneously be a manipulator of symbols, Marcus outlines a variety of ways in which neural systems could be organized so as to manipulate symbols, and he shows why such systems are more likely to provide an adequate substrate for language and cognition than neural systems that are inconsistent with the manipulation of symbols. Concluding with a discussion of how a neurally realized system of symbol-manipulation could have evolved and how such a system could unfold developmentally within the womb, Marcus helps to set the future agenda of cognitive neuroscience.
The rapid growth of neural network research has led to a major reappraisal of many fundamental assumptions in cognitive and perceptual psychology. This text—aimed at the advanced undergraduate and beginning postgraduate student—is an in-depth guide to those aspects of neural network research that are of direct relevance to human information processing. Examples of new connectionist models of learning, vision, language and thought are described in detail. Both neurological and psychological considerations are used in assessing its theoretical contributions. The status of the basic predicates like exclusive-OR is examined, the limitations of perceptrons are explained and properties of multi-layer networks are described in terms of many examples of psychological processes. The history of neural networks is discussed from a psychological perspective which examines why certain issues have become important. The book ends with a general critique of the new connectionist approach. It is clear that new connectionism work provides a distinctive framework for thinking about central questions in cognition and perception. This new textbook provides a clear and useful introduction to its theories and applications.
In this volume, the authors present their view of cognition. They propose that unlike the classical paradigm that takes the mind to be a computer, the mind is best understood as a dynamical system realized in a neural network.
Bringing together contributions in biology, neuroscience, computer science, physics, and psychology, this book offers a solid tutorial on current research activity in connectionist-inspired biology-based modeling. It describes specific experimental approaches and also confronts general issues related to learning associative memory, and sensorimotor development. Introductory chapters by editors Hanson and Olson, along with Terrence Sejnowski, Christof Koch, and Patricia S. Churchland, provide an overview of computational neuroscience, establish the distinction between "realistic" brain models and "simplified" brain models, provide specific examples of each, and explain why each approach might be appropriate in a given context. The remaining chapters are organized so that material on the anatomy and physiology of a specific part of the brain precedes the presentation of modeling studies. The modeling itself ranges from simplified models to more realistic models and provides examples of constraints arising from known brain detail as well as choices modelers face when including or excluding such constraints. There are three sections, each focused on a key area where biology and models have converged. Stephen Jose Hanson is Member of Technical Staff, Bellcore, and Visiting Faculty, Cognitive Science Laboratory, Princeton University. Carl R. Olson is Assistant Professor, Department of Psychology at Princeton Connectionist Modeling and Brain Functionis included in the Network Modeling and Connectionism series, edited by Jeffrey Elman.
Mind design is the endeavor to understand mind (thinking, intellect) in terms of its design (how it is built, how it works). Unlike traditional empirical psychology, it is more oriented toward the "how" than the "what." An experiment in mind design is more likely to be an attempt to build something and make it work—as in artificial intelligence—than to observe or analyze what already exists. Mind design is psychology by reverse engineering. When Mind Design was first published in 1981, it became a classic in the then-nascent fields of cognitive science and AI. This second edition retains four landmark essays from the first, adding to them one earlier milestone (Turing's "Computing Machinery and Intelligence") and eleven more recent articles about connectionism, dynamical systems, and symbolic versus nonsymbolic models. The contributors are divided about evenly between philosophers and scientists. Yet all are "philosophical" in that they address fundamental issues and concepts; and all are "scientific" in that they are technically sophisticated and concerned with concrete empirical research. Contributors Rodney A. Brooks, Paul M. Churchland, Andy Clark, Daniel C. Dennett, Hubert L. Dreyfus, Jerry A. Fodor, Joseph Garon, John Haugeland, Marvin Minsky, Allen Newell, Zenon W. Pylyshyn, William Ramsey, Jay F. Rosenberg, David E. Rumelhart, John R. Searle, Herbert A. Simon, Paul Smolensky, Stephen Stich, A.M. Turing, Timothy van Gelder
Rethinking Innateness asks the question, "What does it really mean to say that a behavior is innate?" The authors describe a new framework in which interactions, occurring at all levels, give rise to emergent forms and behaviors. These outcomes often may be highly constrained and universal, yet are not themselves directly contained in the genes in any domain-specific way. One of the key contributions of Rethinking Innateness is a taxonomy of ways in which a behavior can be innate. These include constraints at the level of representation, architecture, and timing; typically, behaviors arise through the interaction of constraints at several of these levels.The ideas are explored through dynamic models inspired by a new kind of "developmental connectionism," a marriage of connectionist models and developmental neurobiology, forming a new theoretical framework for the study of behavioral development. While relying heavily on the conceptual and computational tools provided by connectionism, Rethinking Innateness also identifies ways in which these tools need to be enriched by closer attention to biology.