Handbook of Pseudo-Riemannian Geometry and Supersymmetry

Handbook of Pseudo-Riemannian Geometry and Supersymmetry

Author: Vicente Cortés

Publisher: European Mathematical Society

Published: 2010

Total Pages: 972

ISBN-13: 9783037190791

DOWNLOAD EBOOK

The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.


Supergravity

Supergravity

Author: Daniel Z. Freedman

Publisher: Cambridge University Press

Published: 2012-04-05

Total Pages: 626

ISBN-13: 1139642855

DOWNLOAD EBOOK

Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.


Spinors In Physics And Geometry

Spinors In Physics And Geometry

Author: Giuseppe Furlan

Publisher: World Scientific

Published: 1988-11-01

Total Pages: 368

ISBN-13: 9814644447

DOWNLOAD EBOOK

This conference brought together physicists and mathematicians working on spinors, which have played an important role in recent research on supersymmetry, Kaluza-Klein theories, twistors and general relativity.


Conformal Differential Geometry

Conformal Differential Geometry

Author: Helga Baum

Publisher: Springer Science & Business Media

Published: 2011-01-28

Total Pages: 161

ISBN-13: 3764399090

DOWNLOAD EBOOK

Conformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of such operators are the Yamabe-, the Paneitz-, the Dirac- and the twistor operator. The aim of the seminar was to present the basic ideas and some of the recent developments around Q-curvature and conformal holonomy. The part on Q-curvature discusses its origin, its relevance in geometry, spectral theory and physics. Here the influence of ideas which have their origin in the AdS/CFT-correspondence becomes visible. The part on conformal holonomy describes recent classification results, its relation to Einstein metrics and to conformal Killing spinors, and related special geometries.


Dirac Operators in Riemannian Geometry

Dirac Operators in Riemannian Geometry

Author: Thomas Friedrich

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 213

ISBN-13: 0821820559

DOWNLOAD EBOOK

For a Riemannian manifold M, the geometry, topology and analysis are interrelated in ways that have become widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants. In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $\textrm{spin}mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature. Considerations of Killing spinors and solutions of the twistor equation on M lead to results about whether M is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.


Strings and Geometry

Strings and Geometry

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 396

ISBN-13: 9780821837153

DOWNLOAD EBOOK

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.


Supersymmetric Field Theories

Supersymmetric Field Theories

Author: Sergio Cecotti

Publisher: Cambridge University Press

Published: 2015-01-08

Total Pages: 425

ISBN-13: 1316214001

DOWNLOAD EBOOK

Adopting an elegant geometrical approach, this advanced pedagogical text describes deep and intuitive methods for understanding the subtle logic of supersymmetry while avoiding lengthy computations. The book describes how complex results and formulae obtained using other approaches can be significantly simplified when translated to a geometric setting. Introductory chapters describe geometric structures in field theory in the general case, while detailed later chapters address specific structures such as parallel tensor fields, G-structures, and isometry groups. The relationship between structures in supergravity and periodic maps of algebraic manifolds, Kodaira–Spencer theory, modularity, and the arithmetic properties of supergravity are also addressed. Relevant geometric concepts are introduced and described in detail, providing a self-contained toolkit of useful techniques, formulae and constructions. Covering all the material necessary for the application of supersymmetric field theories to fundamental physical questions, this is an outstanding resource for graduate students and researchers in theoretical physics.


The Theory of Spinors

The Theory of Spinors

Author: Élie Cartan

Publisher: Courier Corporation

Published: 2012-04-30

Total Pages: 193

ISBN-13: 0486137325

DOWNLOAD EBOOK

Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.