This comprehensive new resource provides in-depth and timely coverage of the underpinnings and latest advances of MIMO radar. This book provides a comprehensive introduction to MIMO radar and demonstrates it’s utility in real-world applications, then culminates with the latest advances in optimal and adaptive MIMO radar for enhanced detection and target ID in challenging environments. Signal processing prerequisites are explained, including radar signals, orthogonal waveforms, matched filtering, multi-channel beam forming, and Doppler processing. This book discusses MIMO radar signal model, antenna properties, system modeling and waveform alternatives. MIMO implantation challenges are covered, including computational complexity, adaptive clutter mitigation, calibration and equalization, and hardware constraints. Applications for GMTI radar, OTH radar, maritime radar, and automotive radar are explained. The book offers an introduction to optimum MIMO radar and includes details about detection, clutter, and target ID. Insight into adaptive MIMO radar and MIMO channel estimation is presented and techniques and illustrative examples are given. Readers find exclusive flight testing data from DARPA. The breadth of coverage in this all-inclusive resource makes it suitable for both practicing engineers and advanced researchers. The book concludes with discussions on areas for future research.
The requirements for multimedia (especially video and audio) communications increase rapidly in the last two decades in broad areas such as television, entertainment, interactive services, telecommunications, conference, medicine, security, business, traffic, defense and banking. Video and audio coding standards play most important roles in multimedia communications. In order to meet these requirements, series of video and audio coding standards have been developed such as MPEG-2, MPEG-4, MPEG-21 for audio and video by ISO/IEC, H.26x for video and G.72x for audio by ITU-T, Video Coder 1 (VC-1) for video by the Society of Motion Picture and Television Engineers (SMPTE) and RealVideo (RV) 9 for video by Real Networks. AVS China is the abbreviation for Audio Video Coding Standard of China. This new standard includes four main technical areas, which are systems, video, audio and digital copyright management (DRM), and some supporting documents such as consistency verification. The second part of the standard known as AVS1-P2 (Video - Jizhun) was approved as the national standard of China in 2006, and several final drafts of the standard have been completed, including AVS1-P1 (System - Broadcast), AVS1-P2 (Video - Zengqiang), AVS1-P3 (Audio - Double track), AVS1-P3 (Audio - 5.1), AVS1-P7 (Mobile Video), AVS-S-P2 (Video) and AVS-S-P3 (Audio). AVS China provides a technical solution for many applications such as digital broadcasting (SDTV and HDTV), high-density storage media, Internet streaming media, and will be used in the domestic IPTV, satellite and possibly the cable TV market. Comparing with other coding standards such as H.264 AVC, the advantages of AVS video standard include similar performance, lower complexity, lower implementation cost and licensing fees. This standard has attracted great deal of attention from industries related to television, multimedia communications and even chip manufacturing from around the world. Also many well known companies have joined the AVS Group to be Full Members or Observing Members. The 163 members of AVS Group include Texas Instruments (TI) Co., Agilent Technologies Co. Ltd., Envivio Inc., NDS, Philips Research East Asia, Aisino Corporation, LG, Alcatel Shanghai Bell Co. Ltd., Nokia (China) Investment (NCIC) Co. Ltd., Sony (China) Ltd., and Toshiba (China) Co. Ltd. as well as some high level universities in China. Thus there is a pressing need from the instructors, students, and engineers for a book dealing with the topic of AVS China and its performance comparisons with similar standards such as H.264, VC-1 and RV-9.
Provides students with a system-level perspective and the tools they need to understand, analyze and design complete digital systems using VHDL. It goes beyond the design of simple combinational and sequential modules to show how such modules are used to build complete systems, reflecting digital design in the real world.
This book provides students with a system-level perspective and the tools they need to understand, analyze and design complete digital systems using Verilog. It goes beyond the design of simple combinational and sequential modules to show how such modules are used to build complete systems, reflecting digital design in the real world.
This book presents the proceedings of the Conference on Algorithms and Applications (ALAP 2018), which focuses on various areas of computing, like distributed systems and security, big data and analytics and very-large-scale integration (VLSI) design. The book provides solutions to a broad class of problems in diverse areas of algorithms in our daily lives in a world designed for, and increasingly controlled by algorithms. Written by eminent personalities from academia and industry, the papers included offer insights from a number of perspectives, providing an overview of the state of the art in the field. The book consists of invited talks by respected speakers, papers presented in technical sessions, and tutorials to offer ideas, results, work-in-progress and experiences of various algorithmic aspects of computational science and engineering.
Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (MIMO) wireless communications research has drawn remarkable interest in recent years. Exciting theoretical advances have been complemented by rapid transition of research results to industry products and services, thus creating a vibrant new area. Space-time processing is a broad area, owing in part to the underlying convergence of information theory, communications and signal processing research that brought it to fruition. This book presents a balanced and timely introduction to space-time processing for MIMO communications, including highlights of emerging trends, such as spatial multiplexing and joint transceiver optimization. Includes detailed coverage of wireless channel sounding, modelling, characterization and model validation. Provides state-of-the-art research results on space-time coding, including comprehensive tutorial coverage of orthogonal space-time block codes. Discusses important recent developments in spatial multiplexing, transmit beam-forming, pre-coding and joint transceiver design for the multi-user MIMO downlink using full or partial CSI. Illustrates all theory with numerous examples gleaned from cutting-edge research from around the globe. This valuable resource will appeal to engineers, developers and consultants involved in the design and implementation of space-time processing for MIMO communications. Its accessible format, amply illustrated with real world case studies, contains relevant, detailed advice for postgraduate students and researchers specializing in this field.
This book constitutes the refereed proceedings of the 13th International Forum of Digital TV and Wireless Multimedia Communication, IFTC 2016, held in Shanghai, China, in November 2016. The 38 revised full papers presented were carefully reviewed and selected from 102 submissions. The papers are organized in topical sections on image processing; audio processing; image and video compression; telecommunications.
Learn about Ultra-wideband (UWB) transmission - the most talked about application in wireless communications. UWB wireless communication is a revolutionary technology for transmitting large amounts of digital data over a wide spectrum of frequency bands with very low power for a short distance. This exciting new text covers the fundamental aspects of UWB wireless communications systems for short-range communications. It also focuses on more advanced information about networks and applications. Chapters include: Radio Propagation and Large Scale Variations, Pulse Propagation and Channel Modelling, MIMO (Multiple Input, Multiple Output) RF Subsystems and Ad Hoc Networks. Focuses on UWB wireless communications rather than UWB radar, which has been covered before. Provides long and short-term academic and technological value. Teaches readers the fundamentals, challenges and up-to-date technical processes in this field.