Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations

Author: Randall J. LeVeque

Publisher: SIAM

Published: 2007-01-01

Total Pages: 356

ISBN-13: 9780898717839

DOWNLOAD EBOOK

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.


Ordinary Differential Equations

Ordinary Differential Equations

Author: Philip Hartman

Publisher: SIAM

Published: 1982-01-01

Total Pages: 612

ISBN-13: 9780898719222

DOWNLOAD EBOOK

Ordinary Differential Equations covers the fundamentals of the theory of ordinary differential equations (ODEs), including an extensive discussion of the integration of differential inequalities, on which this theory relies heavily. In addition to these results, the text illustrates techniques involving simple topological arguments, fixed point theorems, and basic facts of functional analysis. Unlike many texts, which supply only the standard simplified theorems, this book presents the basic theory of ODEs in a general way. This SIAM reissue of the 1982 second edition covers invariant manifolds, perturbations, and dichotomies, making the text relevant to current studies of geometrical theory of differential equations and dynamical systems. In particular, Ordinary Differential Equations includes the proof of the Hartman-Grobman theorem on the equivalence of a nonlinear to a linear flow in the neighborhood of a hyperbolic stationary point, as well as theorems on smooth equivalences, the smoothness of invariant manifolds, and the reduction of problems on ODEs to those on "maps" (Poincaré). Audience: readers should have knowledge of matrix theory and the ability to deal with functions of real variables.


Taylor Approximations for Stochastic Partial Differential Equations

Taylor Approximations for Stochastic Partial Differential Equations

Author: Arnulf Jentzen

Publisher: SIAM

Published: 2011-12-08

Total Pages: 224

ISBN-13: 1611972000

DOWNLOAD EBOOK

This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with H?lder continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.


Partial Differential Equations

Partial Differential Equations

Author: J. Necas

Publisher: Routledge

Published: 2018-05-04

Total Pages: 364

ISBN-13: 1351425862

DOWNLOAD EBOOK

As a satellite conference of the 1998 International Mathematical Congress and part of the celebration of the 650th anniversary of Charles University, the Partial Differential Equations Theory and Numerical Solution conference was held in Prague in August, 1998. With its rich scientific program, the conference provided an opportunity for almost 200 participants to gather and discuss emerging directions and recent developments in partial differential equations (PDEs). This volume comprises the Proceedings of that conference. In it, leading specialists in partial differential equations, calculus of variations, and numerical analysis present up-to-date results, applications, and advances in numerical methods in their fields. Conference organizers chose the contributors to bring together the scientists best able to present a complex view of problems, starting from the modeling, passing through the mathematical treatment, and ending with numerical realization. The applications discussed include fluid dynamics, semiconductor technology, image analysis, motion analysis, and optimal control. The importance and quantity of research carried out around the world in this field makes it imperative for researchers, applied mathematicians, physicists and engineers to keep up with the latest developments. With its panel of international contributors and survey of the recent ramifications of theory, applications, and numerical methods, Partial Differential Equations: Theory and Numerical Solution provides a convenient means to that end.


Operator Methods in Ordinary and Partial Differential Equations

Operator Methods in Ordinary and Partial Differential Equations

Author: Sergio Albeverio

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 423

ISBN-13: 303488219X

DOWNLOAD EBOOK

CO«i»b.H BaCHJIbeBHa lU>BaJIeBcR8JI (Sonja Kovalevsky) was born in Moscow in 1850 and died in Stockholm in 1891. Between these years, in the then changing and turbulent circumstances for Europe, lies the all too brief life of this remarkable woman. This life was lived out within the great European centers of power and learning in Russia, France, Germany, Switzerland, England and Sweden. To this day, now 150 years after her birth, her influence for and contribution to mathe matics, science, literature, women's rights and democratic government are recorded and reviewed, not only in Europe but now in countries far removed in time and distance from the lands of her birth and being. This volume, dedicated to her memory and to her achievements, records the Proceedings of the Marcus Wallenberg Symposium held, in memory of Sonja Kovalevsky, at Stockholm University from 18 to 22 June 2000. The symposium was held at the Department of Mathematics with its excellent library and lecture halls providing favourable working conditions. Within these pages are contained a curriculum vitae for Sonja Kovalevsky, a list of all her scientific publications, together with a copy of the moving and elegant obituary notice written by her friend and protector Gosta Mittag-Leffler. These papers are followed by a leading article entitled Sonja Kovalevsky: Her life and professorship in Stockholm, written especially for this volume by Jan-Erik Bjork in preparation for his major address to the Symposium.