Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
The past decade has seen a major resurgence in optical research and the teaching of optics in the major universities both in this country and abroad. Electrooptical devices have become achallenging subject of study that has penetrated both the electrical engineering and the physics departments of most major schools. There seems to be something about the laser that has appealed to both the practical electrical engineer with a hankering for fundamental research and to the fundamental physicist with a hankering to be practical. Somehow or other, this same form of enthusiasm has not previously existed in the study of photoelectronic devices that form images. This field of endeavor is becoming more and more sophisticated as newer forms of solid-state devices enter the field, not only in the data-processing end, but in the conversion of radiant energy into electrical charge patterns that are stored, manipulated, and read out in a way that a decade ago would have been considered beyond some fundamental limit or other.
Comprehensive medical imaging physics notes aimed at those sitting the first FRCR physics exam in the UK and covering the scope of the Royal College of Radiologists syllabus. Written by Radiologists, the notes are concise and clearly organised with 100's of beautiful diagrams to aid understanding. The notes cover all of radiology physics, including basic science, x-ray imaging, CT, ultrasound, MRI, molecular imaging, and radiation dosimetry, protection and legislation. Although aimed at UK radiology trainees, it is also suitable for international residents taking similar examinations, postgraduate medical physics students and radiographers. The notes provide an excellent overview for anyone interested in the physics of radiology or just refreshing their knowledge. This third edition includes updates to reflect new legislation and many new illustrations, added sections, and removal of content no longer relevent to the FRCR physics exam. This edition has gone through strict critique and evaluation by physicists and other specialists to provide an accurate, understandable and up-to-date resource. The book summarises and pulls together content from the FRCR Physics Notes at Radiology Cafe and delivers it as a paperback or eBook for you to keep and read anytime. There are 7 main chapters, which are further subdivided into 60 sub-chapters so topics are easy to find. There is a comprehensive appendix and index at the back of the book.
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
In the past few decades, many significant insights have been gained into several areas of computational methods in sciences and engineering. New problems and methodologies have appeared in some areas of sciences and engineering. There is always a need in these fields for the advancement of information exchange. The aim of this book is to facilitate the sharing of ideas, problems and methodologies between computational scientists and engineers in several disciplines. Extended abstracts of papers on the recent advances regarding computational methods in sciences and engineering are provided. The book briefly describes new methods in numerical analysis, computational mathematics, computational and theoretical physics, computational and theoretical chemistry, computational biology, computational mechanics, computational engineering, computational medicine, high performance computing, etc.
Each number contains the proceedings of a particular meeting, conference, symposium, etc., sponsored by the Institution of Electrical Engineers in association with others.
The NATO Advanced Study Institute (ASI) on Physics and Engineering of Medical Imaging has addressed a subject which in the wide area of biomedical technology is one of those which are showing greater impact in the practice of medicine for the ability to picture both Anatomy and Physiology. The information and accuracy obtained by whatever imaging methodology is a complex result of a multidisciplinary effort of several sciences such as Physics, Engineering, Electronics, Chemistry, Medicine, etc ... Development has occurred through work performed in different environments such as basic and applied research laboratories, industries and clinical centers, with the aim of achieving an efficient transfer of know-how and technology for the improvement of both investigation possibilities and health care. On one hand, such an effort requires an ever-increasing committment of human and financial resources at research and industrial level, and, on the other, it meets serious difficulties in recruiting the necessary human expertise oriented to this technology which breaks with the tradi tiona I academic borders of the single disciplines. Furthermore, the scientific community is continually dealing with the problem of increasing the performance and, at the same time, complexity and costs of instruments, applying more and more sophisticated technology in an effort to meet the demand for more complete and accurate clinical information. The scientific program of this ASI and the qualification of the authors reveals the intrinsic complexity of the development process of the Imaging methodologies.
Contains more than 230 figures that present experimental CCD and CMOS data products and modeling simulations connected to photon transfer. This title also provides hundreds of relations that support photon transfer theory, simulations, and data.
The past decade has seen a major resurgence in optics research and the teaching of optics throughout the major universities both in this country and abroad. Electrooptical devices have become a challenging form of study that has penetrated both the electrical engineering and the physics departments of most major schools. There seems to be something challeng ing about a laser that appeals to both the practical electrical engineer with a hankering for fundamental research and to the fundamental physicist with a hankering to be practical. Somehow or other this same form of enthusiasm has not previously existed in the study of photoelectronic devices that form images. This field of, endeavor is becoming more and more so phisticated as newer forms of solid state devices enter the field not only in the data processing end but in the conversion of radiant energy into electrical charge patterns that are stored, manipulated, and read out in a way that a decade ago would have been considered beyond some fundamental limit or other. It is unfortunate, however, that this kind of material has heretofore been learned only by the process of becoming an apprentice in one or more of the major development laboratories concerned with the manufacture of image intensifiers or television tubes or the production of systems employing these devices.