Numerical and Computer Methods in Structural Mechanics

Numerical and Computer Methods in Structural Mechanics

Author: Steven J. Fenves

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 698

ISBN-13: 1483272540

DOWNLOAD EBOOK

Numerical and Computer Methods in Structural Mechanics is a compendium of papers that deals with the numerical methods in structural mechanics, computer techniques, and computer capabilities. Some papers discus the analytical basis of the computer technique most widely used in software, that is, the finite element method. This method includes the convergence (in terms of variation principles) isoparametrics, hybrid models, and incompatible displacement models. Other papers explain the storage or retrieval of data, as well as equation-solving algorithms. Other papers describe general-purpose structural mechanics programs, alternatives to, and extension of the usual finite element approaches. Another paper explores nonlinear, dynamic finite element problems, and a direct physical approach to determine finite difference models. Special papers explain structural mechanics used in computing, particularly, those related to integrated data bases, such as in the Structures Oriented Exchange System of the Office of Naval Research and the integrated design of tanker structures. Other papers describe software and hardware capabilities, for example, in ship design, fracture mechanics, biomechanics, and crash safety. The text is suitable for programmers, computer engineers, researchers, and scientists involved in materials and industrial design.


The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

Author: A. K. Aziz

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 814

ISBN-13: 1483267989

DOWNLOAD EBOOK

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.


Proceedings of the International Conference on Advances in Computational Mechanics 2017

Proceedings of the International Conference on Advances in Computational Mechanics 2017

Author: Hung Nguyen-Xuan

Publisher: Springer

Published: 2018-02-20

Total Pages: 1137

ISBN-13: 9811071497

DOWNLOAD EBOOK

This book provides an overview of state-of-the-art methods in computational engineering for modeling and simulation. This proceedings volume includes a selection of refereed papers presented at the International Conference on Advances in Computational Mechanics (ACOME) 2017, which took place on Phu Quoc Island, Vietnam on August 2-4, 2017. The contributions highlight recent advances in and innovative applications of computational mechanics. Subjects covered include: biological systems; damage, fracture and failure; flow problems; multiscale multiphysics problems; composites and hybrid structures; optimization and inverse problems; lightweight structures; computational mechatronics; computational dynamics; numerical methods; and high-performance computing. The book is intended for academics, including graduate students and experienced researchers interested in state-of-the-art computational methods for solving challenging problems in engineering.


Computer Science and Scientific Computing

Computer Science and Scientific Computing

Author: James M. Ortega

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 317

ISBN-13: 1483272486

DOWNLOAD EBOOK

Computer Science and Scientific Computing contains the proceedings of the Third ICASE Conference on Scientific Computing held in Williamsburg, Virginia, on April l and 2, 1976, under the auspices of the Institute for Computer Applications in Systems Engineering at the NASA Langley Research Center. The conference provided a forum for reviewing all the aspects of scientific computing and covered topics ranging from computer-aided design (CAD) and computer science technology to the design of large hydrodynamics codes. Case studies in reliable computing are also presented. Comprised of 13 chapters, this book begins with an introduction to the use of the hierarchical family concept in the development of scientific programming systems. The discussion then turns to the data structures of scientific computing and their representation and management; some important CAD capabilities required to support aerospace design in the areas of interactive support, information management, and computer hardware advances as well as some computer science developments which may contribute significantly to making such capabilities possible; and the use of symbolic computation systems for problem solving in scientific research. Subsequent chapters deal with computer applications in astrophysics; the possibility of computing turbulence and numerical wind tunnels; and the basis for a general-purpose program for finite element analysis. Software tools for computer graphics are also considered. This monograph will be of value to scientists, systems designers and engineers, and students in computer science who have an interest in the subject of scientific computing.


Metal Forming and the Finite-Element Method

Metal Forming and the Finite-Element Method

Author: the late Shiro Kobayashi

Publisher: Oxford University Press

Published: 1989-03-09

Total Pages: 398

ISBN-13: 0195364570

DOWNLOAD EBOOK

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.