This is a first undergraduate textbook in Solid State Physics or Condensed Matter Physics. While most textbooks on the subject are extremely dry, this book is written to be much more exciting, inspiring, and entertaining.
Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.
Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book begins with a clear, coherent picture of simple models of solids and properties and progresses to more advanced properties and topics later in the book. It offers a comprehensive account of the modern topics in condensed matter physics by including introductory accounts of the areas of research in which intense research is underway. The book assumes a working knowledge of quantum mechanics, statistical mechanics, electricity and magnetism and Green's function formalism (for the second-semester curriculum). - Covers many advanced topics and recent developments in condensed matter physics which are not included in other texts and are hot areas: Spintronics, Heavy fermions, Metallic nanoclusters, Zno, Graphene and graphene-based electronic, Quantum hall effect, High temperature superdonductivity, Nanotechnology - Offers a diverse number of Experimental techniques clearly simplified - Features end of chapter problems
Now updated—the leading single-volume introduction to solid state and soft condensed matter physics This Second Edition of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. Comprehensive and authoritative, it consolidates the critical advances of the past fifty years, bringing together an exciting collection of new and classic topics, dozens of new figures, and new experimental data. This updated edition offers a thorough treatment of such basic topics as band theory, transport theory, and semiconductor physics, as well as more modern areas such as quasicrystals, dynamics of phase separation, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids. In addition to careful study of electron dynamics, electronics, and superconductivity, there is much material drawn from soft matter physics, including liquid crystals, polymers, and fluid dynamics. Provides frequent comparison of theory and experiment, both when they agree and when problems are still unsolved Incorporates many new images from experiments Provides end-of-chapter problems including computational exercises Includes more than fifty data tables and a detailed forty-page index Offers a solutions manual for instructors Featuring 370 figures and more than 1,000 recent and historically significant references, this volume serves as a valuable resource for graduate and undergraduate students in physics, physics professionals, engineers, applied mathematicians, materials scientists, and researchers in other fields who want to learn about the quantum and atomic underpinnings of materials science from a modern point of view.
Based on an established course and covering the fundamentals, central areas and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure and many-body interactions as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconducting - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 246 illustrations, 9 tables and 100 homework problems, as well as numerous worked examples, for students to test their understanding. Solutions to the problems for instructors are available at www.cambridge.org/cohenlouie.
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.
An introduction to the area of condensed matter in a nutshell. This textbook covers the standard topics, including crystal structures, energy bands, phonons, optical properties, ferroelectricity, superconductivity, and magnetism.