Condensation and Coherence in Condensed Matter

Condensation and Coherence in Condensed Matter

Author: Tord Claeson

Publisher: World Scientific

Published: 2003

Total Pages: 590

ISBN-13: 9789812383532

DOWNLOAD EBOOK

In 2001, the Nobel Foundation celebrated the 100th anniversary of the first Nobel Prize, and all previous Nobel laureates were invited to attend the Nobel ceremonies in Stockholm. This gave an excellent opportunity for arranging jubilee symposia with topics that would attract several of the laureates. The chosen subject of ?Condensation and Coherence in Condensed Systems? attracted sixteen Nobel laureates and another thirty-five leading scientists.The idea was to bring scientists together from several related subdisciplines: atomic physics, quantum optics, and condensed matter physics, for cross-breeding of ideas, concepts, and experience. Subjects like phase transitions in strongly coupled systems, Bose-Einstein condensation in weakly coupled systems, macroscopic quantum phenomena, coherence in mesoscopic structures, and quantum information were intensively discussed from different points of view. Coherence phenomena in condensed systems were emphasized. A special session was devoted to the emerging field of quantum computing, with experimental and theoretical results reported for different types of qu-bits. The 2001 Nobel Prize awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman, ?for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates,? gave an extra flavor to the theme of the Centennial Symposium.


Condensation And Coherence In Condensed Matter, Proceedings Of The Nobel Jubilee Symposium

Condensation And Coherence In Condensed Matter, Proceedings Of The Nobel Jubilee Symposium

Author: T Claeson

Publisher: World Scientific

Published: 2003-03-21

Total Pages: 187

ISBN-13: 9814486418

DOWNLOAD EBOOK

In 2001, the Nobel Foundation celebrated the 100th anniversary of the first Nobel Prize, and all previous Nobel laureates were invited to attend the Nobel ceremonies in Stockholm. This gave an excellent opportunity for arranging jubilee symposia with topics that would attract several of the laureates. The chosen subject of “Condensation and Coherence in Condensed Systems” attracted sixteen Nobel laureates and another thirty-five leading scientists.The idea was to bring scientists together from several related subdisciplines: atomic physics, quantum optics, and condensed matter physics, for cross-breeding of ideas, concepts, and experience. Subjects like phase transitions in strongly coupled systems, Bose-Einstein condensation in weakly coupled systems, macroscopic quantum phenomena, coherence in mesoscopic structures, and quantum information were intensively discussed from different points of view. Coherence phenomena in condensed systems were emphasized. A special session was devoted to the emerging field of quantum computing, with experimental and theoretical results reported for different types of qu-bits. The 2001 Nobel Prize awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman, “for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates,” gave an extra flavor to the theme of the Centennial Symposium.


Quantum Liquids

Quantum Liquids

Author: Anthony James Leggett

Publisher: OUP Oxford

Published: 2006-09-28

Total Pages: 405

ISBN-13: 0191037214

DOWNLOAD EBOOK

Starting from first principles, this book introduces the closely related phenomena of Bose condensation and Cooper pairing, in which a very large number of single particles or pairs of particles are forced to behave in exactly the same way, and explores their consequences in condensed matter systems. Eschewing advanced formal methods, the author uses simple concepts and arguments to account for the various qualitatively new phenomena which occur in Bose-condensed and Cooper-paired systems, including but not limited to the spectacular macroscopic phenomena of superconductivity and superfluidity. The physical systems discussed include liquid 4-He, the BEC alkali gases, "classical" superconductors, superfluid 3-He, "exotic" superconductors and the recently stabilized Fermi alkali gases. The book should be accessible to beginning graduate students in physics or advanced undergraduates.


Bose-Einstein Condensation of Excitons and Biexcitons

Bose-Einstein Condensation of Excitons and Biexcitons

Author: Svi︠a︡toslav Anatolʹevich Moskalenko

Publisher: Cambridge University Press

Published: 2000-02-28

Total Pages: 434

ISBN-13: 9780521580991

DOWNLOAD EBOOK

Bose-Einstein condensation of excitons is a unique effect in which the electronic states of a solid can self-organize to acquire quantum phase coherence. The phenomenon is closely linked to Bose-Einstein condensation in other systems such as liquid helium and laser-cooled atomic gases. This is the first book to provide a comprehensive survey of this field, covering theoretical aspects as well as recent experimental work. After setting out the relevant basic physics of excitons, the authors discuss exciton-phonon interactions as well as the behaviour of biexcitons. They cover exciton phase transitions and give particular attention to nonlinear optical effects including the optical Stark effect and chaos in excitonic systems. The thermodynamics of equilibrium, quasi-equilibrium, and nonequilibrium systems are examined in detail. The authors interweave theoretical and experimental results throughout the book, and it will be of great interest to graduate students and researchers in semiconductor and superconductor physics, quantum optics, and atomic physics.


Bose-Einstein Condensation

Bose-Einstein Condensation

Author: Lev. P. Pitaevskii

Publisher: Oxford University Press

Published: 2003-04-03

Total Pages: 392

ISBN-13: 9780198507192

DOWNLOAD EBOOK

Bose-Einstein Condensation represents a new state of matter and is one of the cornerstones of quantum physics, resulting in the 2001 Nobel Prize. Providing a useful introduction to one of the most exciting field of physics today, this text will be of interest to a growing community of physicists, and is easily accessible to non-specialists alike.


Problems of Condensed Matter Physics

Problems of Condensed Matter Physics

Author: L. V. Keldysh

Publisher: International Monographs on Ph

Published: 2008

Total Pages: 371

ISBN-13: 0199238871

DOWNLOAD EBOOK

The book provides a review of some of the most important and 'hot' topics in condensed matter physics today. It includes contributions by internationally leading experts such as V M Agranovich, B L Altshuler, E Burstein, V L Ginzburg, K Von Klitzing, P B Littlewood, M Pepper etc, and can serve as a guide-book to modern condensed matter physics.


Universal Themes of Bose-Einstein Condensation

Universal Themes of Bose-Einstein Condensation

Author: Nick P. Proukakis

Publisher: Cambridge University Press

Published: 2017-04-27

Total Pages: 663

ISBN-13: 1107085691

DOWNLOAD EBOOK

Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.


Condensed Matter Field Theory

Condensed Matter Field Theory

Author: Alexander Altland

Publisher: Cambridge University Press

Published: 2010-03-11

Total Pages: 785

ISBN-13: 0521769752

DOWNLOAD EBOOK

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.


Quantum Gases

Quantum Gases

Author: Nick Proukakis

Publisher: World Scientific

Published: 2013

Total Pages: 579

ISBN-13: 1848168128

DOWNLOAD EBOOK

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.