Concrete Structure Management - Guide to Ownership and Good Practice

Concrete Structure Management - Guide to Ownership and Good Practice

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2008-01-01

Total Pages: 211

ISBN-13: 2883940843

DOWNLOAD EBOOK

Construction projects are undertaken to meet a variety of business, service and aspirational objectives and needs. The success of a building or an element of infrastructure depends on how well it meets the owner's needs and interests or those of the users. Recent changes in owner attitudes to construction are reflected in an increasing interest in through-life costs, i.e. not only the capital costs of construction but also the operational costs associated with a structure's functional performance for a defined life span. The owner can greatly improve the likelihood of achieving the value they seek from the facility by being intimately and effectively involved in the definition of performance requirements at the start of the construction procurement process. The objective of fib Bulletin 44 is to provide guidance to owners of concrete structures on: the management of their concrete structures (buildings and infrastructure) as part of their business goals or the service objectives of their organization; best practice in the management of concrete structures; their responsibilities with respect to the management of their concrete structures; the wider context and issues of service life design; information and direction needed by the supporting professional team of architects, engineers, specifiers, contractors and others. This Guide also provides background information on topics such as deterioration processes and technical procedures used for the management of concrete structures, including reference to international standards for the protection and repair of concrete structures. These activities are illustrated by application examples/case histories and by a section addressing frequently asked questions. A brief review is made of some potential future developments.


Structural Concrete Textbook, Volume 5

Structural Concrete Textbook, Volume 5

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2012-06-01

Total Pages: 482

ISBN-13: 2883941025

DOWNLOAD EBOOK

The third edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) tofib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.


Precast-concrete buildings in seismic areas

Precast-concrete buildings in seismic areas

Author: FIB – Féd. Int. du Béton

Publisher: FIB - Féd. Int. du Béton

Published: 2016

Total Pages: 290

ISBN-13: 2883941181

DOWNLOAD EBOOK

This document has a broad scope and is not focussed on design issues. Precast construction under seismic conditions is treated as a whole. The main principles of seismic design of different structural systems, their behavior and their construction techniques are presented through rules, construction steps and sequences, procedures, and details that should lead to precast structures built in seismic areas complying with the fundamental performance requirements of collapse prevention and life safety in major earthquakes and limited damage in more frequent earthquakes. The content of this document is largely limited to conventional precast construction and, although some information is provided on the well-known “PRESSS technology” (jointed ductile dry connections), this latter solution is not treated in detail in this document. The general overview, contained in this document, of alternative structural systems and connection solutions available to achieve desired performance levels, intends to provide engineers, architects, clients, and end-users (in general) with a better appreciation of the wide range of applications that modern precast concrete technology can have in various types of construction from industrial to commercial as well as residential. Lastly, the emphasis on practical aspects, from conceptual design to connection detailing, aims to help engineers to move away from the habit of blindly following prescriptive codes in their design, but instead go back to basic principles, in order to achieve a more robust understanding, and thus control, of the seismic behaviour of the structural system as a whole, as well as of its components and individual connections.


Precast segmental bridges

Precast segmental bridges

Author: fib Fédération internationale du béton

Publisher: FIB - Féd. Int. du Béton

Published: 2017-08-01

Total Pages: 198

ISBN-13: 288394122X

DOWNLOAD EBOOK

The concept of precast segmental bridges is not new: the first application documented was from the mid-1940s, designed by Eugene Freyssinet and built over the river Marne near Luzancy in France, between 1944 and 1946. Although innovative, it also contained traditional wet concrete joints between the members. The impressive breakthrough came slightly later with the introduction of match-cast joints by Jean Muller, first for a bridge near Buffalo (USA) in 1952, and later for a bridge across the River Seine at Choisy le Roi near Paris in 1962. This opened the way for a large number of new developments in terms of design, production approaches and construction techniques, and precast prestressed concrete segmental construction became rapidly one of the most efficient and successful bridge construction methods all over the world. These developments are still evolving, but the interaction between design, production and construction is a critical factor for success: the interaction creates opportunities to optimise the scheme, but at the same time is crucial to ensure safety, especially during construction, when large weights are moved, placed and secured, frequently at substantial heights. Engineers of all disciplines involved should interact during the development and realisation of precast segmental bridge (PSB) schemes, to conclude the optimum method statement and consequently check all the intermediate steps of the method statement in terms of stress, stiffness, stability, production and constructability. With the ongoing development of the PSB concept, and consequently moving limits in terms of dimensions, it was concluded to be appropriate to develop a Guide to good practice for the PSB construction method. The present report was developed by an integrated team of engineers with roots in design, structural engineering, production and construction, and provides a valuable source of knowledge, experience, recommendations and examples, with particular emphasis on the fib Model Code for Concrete Structures 2010 and fib Bulletins 20, 33, 48 and 75. I would like to thank all the members of Task Group 1.7, all the individual contributors from outside Task Group 1.7, and the reviewers of the Technical Council of the fib for their contribution to this Guide to good practice. In particular, I would like to thank Gopal Srinivasan and Marcos Sanchez, who, apart from their own contributions, did the final editorial work for this bulletin.


Structural Concrete Textbook, Volume 4

Structural Concrete Textbook, Volume 4

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2010-06-01

Total Pages: 203

ISBN-13: 2883940940

DOWNLOAD EBOOK

The second edition of the Structural Concrete Textbook is an extensive revision that reflects advances in knowledge and technology over the past decade. It was prepared in the intermediate period from the CEP-FIP Model Code 1990 (MC90) to fib Model Code for Concrete Structures 2010 (MC2010), and as such incorporates a significant amount of information that has been already finalized for MC2010, while keeping some material from MC90 that was not yet modified considerably. The objective of the textbook is to give detailed information on a wide range of concrete engineering from selection of appropriate structural system and also materials, through design and execution and finally behaviour in use. The revised fib Structural Concrete Textbook covers the following main topics: phases of design process, conceptual design, short and long term properties of conventional concrete (including creep, shrinkage, fatigue and temperature influences), special types of concretes (such as self compacting concrete, architectural concrete, fibre reinforced concrete, high and ultra high performance concrete), properties of reinforcing and prestressing materials, bond, tension stiffening, moment-curvature, confining effect, dowel action, aggregate interlock; structural analysis (with or without time dependent effects), definition of limit states, control of cracking and deformations, design for moment, shear or torsion, buckling, fatigue, anchorages, splices, detailing; design for durability (including service life design aspects, deterioration mechanisms, modelling of deterioration mechanisms, environmental influences, influences of design and execution on durability); fire design (including changes in material and structural properties, spalling, degree of deterioration), member design (linear members and slabs with reinforcement layout, deep beams); management, assessment, maintenance, repair (including, conservation strategies, risk management, types of interventions) as well as aspects of execution (quality assurance), formwork and curing. The updated textbook provides the basics of material and structural behaviour and the fundamental knowledge needed for the design, assessment or retrofitting of concrete structures. It will be essential reading material for graduate students in the field of structural concrete, and also assist designers and consultants in understanding the background to the rules they apply in their practice. Furthermore, it should prove particularly valuable to users of the new editions of Eurocode 2 for concrete buildings, bridges and container structures, which are based only partly on MC90 and partly on more recent knowledge which was not included in the 1999 edition of the textbook.


Concrete Structures for Oil and Gas Fields in Hostile Marine Environments

Concrete Structures for Oil and Gas Fields in Hostile Marine Environments

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2008-12-01

Total Pages: 38

ISBN-13: 2883940908

DOWNLOAD EBOOK

Concrete offshore structures have been successfully delivered to the international oil and gas industry for more than 35 years. Some 50 major concrete platforms of different shapes and sizes, supporting large production and storage facilities, are currently operating in hostile marine environments worldwide and have excellent service records. After some years with little development activity, today there is a renewed interest in robust structures for the Arctic environment, for Liquefied Natural Gas (LNG) terminals and for special floating barges and vessels. Currently, concrete solutions are being considered for projects north and east of Russia, north of Norway and offshore Newfoundland, among others. Concrete is also in increasing demand in built up coastal areas for a variety of purposes such as harbour works, tunnels and bridges, cargo terminals, parking garages and sea front housing developments where durability and robustness are essential. The mandate of fib Task Group 1.5 was to gather the experience and know-how pertinent to the development, design and execution of offshore concrete structures, and to elaborate on the applicability of concrete structures for the Arctic environments. The findings of the Task Group are presented in fib Bulletin 50. The report is based on experience gained from the design, execution and performance of a number of offshore concrete structures around the world and in particular in the North Sea. Ongoing inspections have shown excellent durability and structural performance, even in structures that have exceeded their design lives, in conditions often characterized by extreme wave loads, freezing conditions, hurricane force winds and seismic actions. This forms the "background" for discussing the applicability of concrete structures for the Arctic regions. Although to a large extent dedicated to oil- and gas- related structures, the report is also relevant to other marine applications where the same design principles, material selection criteria and construction methods apply. fib Bulletin 50 is not in itself a code, nor is it a textbook. Rather, extensive reference is made to proven and readily available design codes and construction guides, as well as relevant papers and proceedings and other fib publications.


External Tendons for Bridges

External Tendons for Bridges

Author: FIB – International Federation for Structural Concrete

Publisher: FIB - International Federation for Structural Concrete

Published: 2020-12-01

Total Pages: 118

ISBN-13: 2883941459

DOWNLOAD EBOOK

The concept of post-tensioning has been recognized for over a century. Interestingly, early developments started with external tendons, but failed to be recognized as a major construction technique for two main reasons: - Low tensile performance of early steels in combination with a poor knowledge of concrete creep and shrinkage properties, - Lack of a durable corrosion protection. With the technological progress, external tendons became increasingly popular in the 1980’s, as a post-tensioning method enabling inspection and, if necessary, replacement of tendons without demolition of structural members. Towards the end of the last century, more than 50 bridges have been built with external tendons, first in France and soon gaining traction in other countries. FIP published a state-of the-art report in May 1996 to provide a review of the application of external tendons, describing specific material problems and methods for dealing with them. 25 years have passed and, while the engineering principles covered by the FIP report remain unchanged, the context has evolved: - External tendons and construction methods have kept evolving with better materials, ever longer spans, and tighter schedules. - Normalization frame in Europe changed, Severe durability issues have occurred in some countries from which the industry can extract good knowledge of the causes and how to avoid similar problems in the future. This new fib bulletin has been prepared with the aim to reflect the current state of the art and encompass the knowledge amassed in the last quarter of century with chapters covering from the design and approval of systems and materials to installation, quality control and monitoring. The last chapter is a compilation of structures worldwide covering all sorts of materials, typologies and construction methods, which might be a source of inspiration for owners and designers alike.


Acceptance of post-tensioning systems for cryogenic applications

Acceptance of post-tensioning systems for cryogenic applications

Author: FIB – International Federation for Structural Concrete

Publisher: FIB - International Federation for Structural Concrete

Published: 2021-04-01

Total Pages: 116

ISBN-13: 2883941475

DOWNLOAD EBOOK

Since the Second World War the demand of energy has undergone an exponential growth that has led to a sharp annual increase in the use of natural gas in both, cities and thermal power stations. Nowadays, the strategic relevance of natural gas as a main source of energy is evident with a contribution of more than 20% of the total world consumption. This development in increasing demand of natural gas has led for a need of suitable storage and transportation infrastructure. Various gases, especially hydrocarbons, are preferably stored in liquid form for transportation and storage since the phase transformation from gas to liquid comes with a significant reduction of the volume (e.g. up to 600 times). Gases can be liquefied by raising the pressure or by cooling to their boiling point, which for most gases is below 0°C. This is known as cryogenic storage. The term cryogenic is derived from two Greek words, namely kryos meaning icy-cold and genes which can be translated as shape. These fib recommendations are concerned about post-tensioning systems used in cryogenic tanks and have been formulated on the basis of actual available knowledge with the aim to reflect the current state of the art. Consequently, these recommendations have included a classification of the different cryogenic tanks typologies used in the past and nowadays, the associated different tendon types depending on their exposure to low temperature (e.g. never, only accidentally or during normal tank operation) and the testing regime required for acceptance of the materials and the post-tensioning system according to this document. An international working group comprising more than 20 experts from administrative authorities, universities, laboratories, owners, structural designers, suppliers of prestressing steels and post-tensioning systems suppliers have actively contributed in order to develop these recommendations. This text has been written to cover best construction practices around the world, and to provide material specifications which are considered to be the most advanced available at the time of preparing this text. For ease of use (for Owner, Designer and Post-tensioning System Supplier), the content has been arranged systematically according to the system components into chapters focusing on performance characteristics, requirements and acceptance criteria.


Guidelines for Submerged Floating Tube Bridges

Guidelines for Submerged Floating Tube Bridges

Author: FIB – International Federation for Structural Concrete

Publisher: FIB - International Federation for Structural Concrete

Published: 2020-10-01

Total Pages: 131

ISBN-13: 2883941432

DOWNLOAD EBOOK

This bulletin is a guidelines document for “Submerged Floating Tube Bridges”, that represents an innovation in Marine Concrete Structures. This theme is considered important for Commission 1 since in the future several applications are forecast in marine environments. Submerged Floating Tube Bridges are a solution that can be proposed to solve different problems in passing water constrains as lakes and fiords, reducing the impact and allowing several economic advantages. The guidelines certainly will boost the application of Submerged Floating Tube Bridges since the document is useful not only for designers but also for construction companies, owners and public administrations. As guidelines, the bulletin gives wide information on the design, construction and management of these structures, allowing all the users to be confident in promoting the use of Submerged Floating Tube Bridges.


Benchmarking of deemed-to-satisfy provisions in standards

Benchmarking of deemed-to-satisfy provisions in standards

Author: fib Fédération internationale du béton

Publisher: fib Fédération internationale du béton

Published: 2015-05-01

Total Pages: 205

ISBN-13: 2883941165

DOWNLOAD EBOOK

Standards for specifying and ensuring the durability of new concrete structures are commonly of the prescriptive kind. fib Bulletin 76: Benchmarking of deemed-to-satisfy provisions in standards - Durability of reinforced concrete structures exposed to chlorides presents the benchmarking of a number of rules for chloride-induced corrosion as given in national codes such as European, US and Australian standards. This new benchmark determines the reliability ranges in the chloride-induced depassivation of rebar if the deemed-to-satisfy rules of different countries are taken into consideration. It does not only involve (probabilistic) calculations using input mainly based on short-term and rapid laboratory-test data but also involves input based on an independent assessment of existing structures. The reliability analyses are carried out using the probabilistic design approach for chloride-induced corrosion presented in fib Bulletin 34: Model Code for Service Life Design (2006), fib Model Code for Concrete Structures 2010 and ISO 16204:2012. The work compares the calculated reliability ranges thus determined with the target reliabilities proposed by current specifications and, based on the comparison, offers a proposal for the improvement of deemed-to-satisfy rules and specifications. fib Bulletin 76 presents and discusses in detail the input data for the examined model parameters and offers an extensive annexe documenting the values of the individual parameters used in the analyses. It thus provides a reliable database for the performance-based probabilistic service-life design of concrete structures exposed to chlorides, be they in the form of salt fog, sea water or de-icing salts.