The Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials presents new and selected content from the 11-volume Biomedical Polymers and Polymeric Biomaterials Encyclopedia. The carefully culled content includes groundbreaking work from the earlier published work as well as exclusive online material added since its publication in print. A diverse and global team of renowned scientists provide cutting edge information concerning polymers and polymeric biomaterials. Acknowledging the evolving nature of the field, the encyclopedia also features newly added content in areas such as tissue engineering, tissue repair and reconstruction, and biomimetic materials.
Since the publication of the first edition in 2000, there has been an explosive growth of literature in biopharmaceutical research and development of new medicines. This encyclopedia (1) provides a comprehensive and unified presentation of designs and analyses used at different stages of the drug development process, (2) gives a well-balanced summary of current regulatory requirements, and (3) describes recently developed statistical methods in the pharmaceutical sciences. Features of the Fourth Edition: 1. 78 new and revised entries have been added for a total of 308 chapters and a fourth volume has been added to encompass the increased number of chapters. 2. Revised and updated entries reflect changes and recent developments in regulatory requirements for the drug review/approval process and statistical designs and methodologies. 3. Additional topics include multiple-stage adaptive trial design in clinical research, translational medicine, design and analysis of biosimilar drug development, big data analytics, and real world evidence for clinical research and development. 4. A table of contents organized by stages of biopharmaceutical development provides easy access to relevant topics. About the Editor: Shein-Chung Chow, Ph.D. is currently an Associate Director, Office of Biostatistics, U.S. Food and Drug Administration (FDA). Dr. Chow is an Adjunct Professor at Duke University School of Medicine, as well as Adjunct Professor at Duke-NUS, Singapore and North Carolina State University. Dr. Chow is the Editor-in-Chief of the Journal of Biopharmaceutical Statistics and the Chapman & Hall/CRC Biostatistics Book Series and the author of 28 books and over 300 methodology papers. He was elected Fellow of the American Statistical Association in 1995.
The Encyclopedia of Library and Information Sciences, comprising of seven volumes, now in its fourth edition, compiles the contributions of major researchers and practitioners and explores the cultural institutions of more than 30 countries. This major reference presents over 550 entries extensively reviewed for accuracy in seven print volumes or online. The new fourth edition, which includes 55 new entires and 60 revised entries, continues to reflect the growing convergence among the disciplines that influence information and the cultural record, with coverage of the latest topics as well as classic articles of historical and theoretical importance.
The Encyclopedia of Image Processing presents a vast collection of well-written articles covering image processing fundamentals (e.g. color theory, fuzzy sets, cryptography) and applications (e.g. geographic information systems, traffic analysis, forgery detection). Image processing advances have enabled many applications in healthcare, avionics, robotics, natural resource discovery, and defense, which makes this text a key asset for both academic and industrial libraries and applied scientists and engineers working in any field that utilizes image processing. Written by experts from both academia and industry, it is structured using the ACM Computing Classification System (CCS) first published in 1988, but most recently updated in 2012.
Undoubtedly the applications of polymers are rapidly evolving. Technology is continually changing and quickly advancing as polymers are needed to solve a variety of day-to-day challenges leading to improvements in quality of life. The Encyclopedia of Polymer Applications presents state-of-the-art research and development on the applications of polymers. This groundbreaking work provides important overviews to help stimulate further advancements in all areas of polymers. This comprehensive multi-volume reference includes articles contributed from a diverse and global team of renowned researchers. It offers a broad-based perspective on a multitude of topics in a variety of applications, as well as detailed research information, figures, tables, illustrations, and references. The encyclopedia provides introductions, classifications, properties, selection, types, technologies, shelf-life, recycling, testing and applications for each of the entries where applicable. It features critical content for both novices and experts including, engineers, scientists (polymer scientists, materials scientists, biomedical engineers, macromolecular chemists), researchers, and students, as well as interested readers in academia, industry, and research institutions.
The Essential Handbook of Polymer Terms and Attributes not only acts as an encyclopaedia of polymer science but also fosters an appreciation for the significance of polymers in fields including materials science, chemistry, engineering, and medicine. This book serves as an excellent reference book, covering every possible term and attribution associated with the vast and diverse field of polymers. This comprehensive volume serves as a vital resource for researchers working in industry and academia, offering a clear and concise exploration of polymer science with the most essential reference data available. Each polymer term is defined in a straightforward manner, ensuring that readers of all levels can grasp the concepts. The book goes beyond mere definitions, providing context and insights into the applications, properties, and synthesis. Bringing polymer terms and attributes together in one place, the book provides a broad knowledge of polymer science and facilitates idea generation for researchers and students embarking on projects related to a specific field of polymer science. Key features: This book covers all possible terms associated with the field of “polymers" and related areas, granting readers a comprehensive understanding of the entire spectrum of polymers. The organization of the book follows an alphabetical format, enabling quick and convenient access to specific terms. Each polymer term is clearly defined with a figure or scheme as needed, allowing readers to visualize the structures, processes, and applications involved. This book is written for science students, chemists, polymer scientists, chemical engineers, pharmaceutical scientists, biomedical scientists, biotechnologists, product formulators, materials scientists, and scientists working on polymers.
Biopolymer Membranes and Films: Health, Food, Environment, and Energy Applications presents the latest techniques for the design and preparation of biopolymer-based membranes and films, leading to a range of cutting-edge applications. The first part of the book introduces the fundamentals of biopolymers, two-dimensional systems, and the characterization of biopolymer membranes and films, considering physicochemical, mechanical and barrier properties. Subsequent sections are organized by application area, with each chapter explaining how biopolymer-based membranes or films can be developed for specific innovative uses across the health, food, environmental and energy sectors. This book is a valuable resource for researchers, scientists and advanced students involved in biopolymer science, polymer membranes and films, polymer chemistry and materials science, as well as for those in industry and academia who are looking to develop materials for advanced applications in the health, food science, environment or energy industries. - Presents detailed coverage of a range of novel applications in key strategic areas across health, food, environment and energy - Considers the difficulties associated with two-dimensional materials - Assists the reader in selecting the best materials and properties for specific applications - Helps researchers, scientists and engineers combine the enhanced properties of membranes and films with the sustainable characteristics of biopolymer-based materials
This encyclopedia, written by authoritative experts under the guidance of an international panel of key researchers from academia, national laboratories, and industry, is a comprehensive reference covering all major aspects of metallurgical science and engineering of aluminum and its alloys. Topics covered include extractive metallurgy, powder metallurgy (including processing), physical metallurgy, production engineering, corrosion engineering, thermal processing (processes such as metalworking and welding, heat treatment, rolling, casting, hot and cold forming), surface engineering and structure such as crystallography and metallography.
gap always exists between the material performance generation of new molecules along with the release during in-vivo animal tests and clinical situations, of substances from a multitude of cells. The plasma because of the difference in individual reactions proteins (including coagulation and complement proteins), the blood cells deposited on the material between one animal and another and humans. Likewise, sophisticated in-vitro and in-vivo models surface or circulating in the blood stream and their are being developed to study living body responses. released substances take part in the dynamic process of fibrinolysis and thrombus formation. Progress has been achieved in culturing mammalian cells, particularly human cells, which has lead to new in-vitro models to study cell-biomaterial Tissue response interactions. These techniques are discussed in the other chapters of this volume. Materials implanted in tissues always generate a response. The major tissue response in the extra BIOLOGICAL MODIFICATION vascular system is an inflammatory process, which may be induced chemically or physically. Many Surfaces of polymeric biomaterials may be modified proteins and cells are involved in this very complex by using a variety of biological entities (e.g.
The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials' community. - The most comprehensive coverage of principles and applications of all classes of biomaterials - Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. - Online chapter exercises available for most chapters