Taking a conceptual approach to the subject, Concepts in Quantum Mechanics provides complete coverage of both basic and advanced topics. Following in the footsteps of Dirac's classic work Principles of Quantum Mechanics, it explains all themes from first principles.The authors present alternative ways of representing the state of a physical system,
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Quantum Mechanics: Concepts and Applications provides a clear, balanced and modern introduction to the subject. Written with the student’s background and ability in mind the book takes an innovative approach to quantum mechanics by combining the essential elements of the theory with the practical applications: it is therefore both a textbook and a problem solving book in one self-contained volume. Carefully structured, the book starts with the experimental basis of quantum mechanics and then discusses its mathematical tools. Subsequent chapters cover the formal foundations of the subject, the exact solutions of the Schrödinger equation for one and three dimensional potentials, time-independent and time-dependent approximation methods, and finally, the theory of scattering. The text is richly illustrated throughout with many worked examples and numerous problems with step-by-step solutions designed to help the reader master the machinery of quantum mechanics. The new edition has been completely updated and a solutions manual is available on request. Suitable for senior undergradutate courses and graduate courses.
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
This graduate-level text develops the aspects of group theory most relevant to physics and chemistry (such as the theory of representations) and illustrates their applications to quantum mechanics. The first five chapters focus chiefly on the introduction of methods, illustrated by physical examples, and the final three chapters offer a systematic treatment of the quantum theory of atoms, molecules, and solids. The formal theory of finite groups and their representation is developed in Chapters 1 through 4 and illustrated by examples from the crystallographic point groups basic to solid-state and molecular theory. Chapter 5 is devoted to the theory of systems with full rotational symmetry, Chapter 6 to the systematic presentation of atomic structure, and Chapter 7 to molecular quantum mechanics. Chapter 8, which deals with solid-state physics, treats electronic energy band theory and magnetic crystal symmetry. A compact and worthwhile compilation of the scattered material on standard methods, this volume presumes a basic understanding of quantum theory.
With contributions by leading quantum physicists, philosophers and historians, this comprehensive A-to-Z of quantum physics provides a lucid understanding of key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional and new concepts, making it an indispensable resource for concise, up-to-date information about the many facets of quantum physics.
Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.
This is an exceptionally accessible, accurate, and non-technical introduction to quantum mechanics. After briefly summarizing the differences between classical and quantum behaviour, this engaging account considers the Stern-Gerlach experiment and its implications, treats the concepts of probability, and then discusses the Einstein-Podolsky-Rosen paradox and Bell's theorem. Quantal interference and the concept of amplitudes are introduced and the link revealed between probabilities and the interference of amplitudes. Quantal amplitude is employed to describe interference effects. Final chapters explore exciting new developments in quantum computation and cryptography, discover the unexpected behaviour of a quantal bouncing-ball, and tackle the challenge of describing a particle with no position. Thought-provoking problems and suggestions for further reading are included. Suitable for use as a course text, The Strange World of Quantum Mechanics enables students to develop a genuine understanding of the domain of the very small. It will also appeal to general readers seeking intellectual adventure.
From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.