The third in the series of yearbooks by the Association of Mathematics Educators in Singapore, Assessment in the Mathematics Classroom is unique as it addresses a focused theme on mathematics education. The objective is to encourage teachers and researchers to include assessment of non-cognitive attributes and to use techniques in addition to paper-and-pencil tests that focus on typical problems.Several renowned international researchers in the field have published their work in the book. The thirteen chapters of the book illustrate evidence-based practices that school teachers and researchers can experiment in their lessons to bring about meaningful learning outcomes. A recurring theme in most chapters is the widely circulated notions of formative assessment and assessment for learning. The book makes a significant contribution towards assessment in mathematics. It is a good resource for research students and a must-read mathematics educators.
This book investigates the practicability and effectiveness of the concept map as a tool for assessing students’ conceptual understanding in mathematics. The author first introduces concept mapping and then employs it to investigate students’ conceptual understanding of four different mathematical topics. Alongside traditional scoring methods, she adopts Social Network Analysis, a new technique, to interpret student-constructed concept maps, which reveals fresh insights into the graphic features of the concept map and into how students connect mathematical concepts. By comparing two traditional school tests with the concept map, she examines its concurrent validity and discusses its strengths and drawbacks from the viewpoint of assessing conceptual understanding. With self-designed questionnaires, interviews, and open-ended writing tasks, she also investigates students and teachers’ attitudes toward concept mapping and describes the implications these findings may have for concept mapping’s use in school and for further research on the topic. Scholars and postgraduate students of mathematics education and teachers interested in concept mapping or assessing conceptual understanding in classroom settings will find this book an informative, inspiring, and overall valuable addition to their libraries.
Students become experts and innovators through Concept-Based teaching Innovators don’t invent without a deep understanding of how the world works. With this foundation, they apply conceptual understanding to solve new problems. We want our students to not only retain ideas, but relate them to other things they encounter, using each new situation to add nuance and sophistication to their thinking. To do this, they need conceptual understanding. This book serves as a road map for Concept-Based teaching. Discover how to help students uncover conceptual relationships and transfer them to new situations. Specifically, teachers will learn: Strategies for introducing conceptual learning to students Four lesson frameworks to help students uncover conceptual relationships How to assess conceptual understanding, and How to differentiate concept-based instruction Look no further. For deep learning and innovative thinking, this book is the place to start. "The authors tear down the false dichotomies of traditional vs innovative education and provide a practical toolkit for developing creativity and applying knowledge through Concept-Based learning. Every practitioner needs this book to juxtapose what worked well in the 20th Century with what is essential in the 21st Century and beyond." Michael McDowell, Superintendent Ross School District, Ross, CA "While most good educators recognise the incredible value of teaching conceptually, it is challenging. The authors have created accessible, practical baby steps for every teacher to use." Dr. Vincent Chan, principal Fairview International School, Kuala Lumpur, Malaysia
This is a complete guide to the concept mapping methodology and strategies behind using it for a broad range of social scientists - including students, researchers and practitioners.
"This book investigates the practicability and effectiveness of the concept map as a tool for assessing students' conceptual understanding in mathematics. The author first introduces concept mapping and then employs it to investigate students' conceptual understanding of four different mathematical topics. Alongside traditional scoring methods, she adopts Social Network Analysis, a new technique, to interpret student-constructed concept maps, which revealed fresh insights into the graphic features of the concept map and into how students connect mathematical concepts. By comparing two traditional school tests with the concept map, she examines its concurrent validity and discusses its strengths and drawbacks from the viewpoint of assessing conceptual understanding. With self-designed questionnaires, interviews, and open-ended writing tasks, she also investigates students and teachers' attitudes toward concept mapping and describes the implications these findings may have for concept mapping's use in school and for further research on the topic. Scholars and postgraduate students of mathematics education and teachers interested in concept mapping or assessing conceptual understanding in classroom settings will find this book an informative, inspiring, and overall valuable addition to their libraries"--
How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.
Give math students the connections between what they learn and how they do math—and suddenly math makes sense If your secondary-school students are fearful of or frustrated by math, it’s time for a new approach. When you teach concepts rather than rote processes, you show students math’s essential elegance, as well as its practicality—and help them discover their own natural mathematical abilities. This book is a road map to retooling how you teach math in a deep, clear, and meaningful way —through a conceptual lens—helping students achieve higher-order thinking skills. Jennifer Wathall shows you how to plan units, engage students, assess understanding, incorporate technology, and even guides you through an ideal concept-based classroom. Practical tools include: Examples from arithmetic to calculus Inquiry tasks, unit planners, templates, and activities Sample assessments with examples of student work Vignettes from international educators A dedicated companion website with additional resources, including a study guide, templates, exemplars, discussion questions, and other professional development activities. Everyone has the power to understand math. By extending Erickson and Lanning’s work on Concept-Based Curriculum and Instruction specifically to math, this book helps students achieve the deep understanding and skills called for by global standards and be prepared for the 21st century workplace. "Jennifer Wathall’s book is one of the most forward thinking mathematics resources on the market. While highlighting the essential tenets of Concept-Based Curriculum design, her accessible explanations and clear examples show how to move students to deeper conceptual understandings. This book ignites the mathematical mind!" — Lois A. Lanning, Author of Designing Concept-based Curriculum for English-Language Arts, K-12 "Wathall is a master at covering all the bases here; this book is bursting with engaging assessment examples, discussion questions, research, and resources that apply specifically to mathematical topics. Any math teacher or coach would be hard-pressed to read it and not come away with scores of ideas, assessments, and lessons that she could use instantly in the classroom. As an IB Workshop Leader and instructional coach, I want this book handy on a nearby shelf for regular referral – it′s a boon to any educator who wants to bring math to life for students." — Alexis Wiggins, Instructional Coach, IB Workshop Leader and Consultant
This fully revised and updated edition of Learning, Creating, and Using Knowledge recognizes that the future of economic well being in today's knowledge and information society rests upon the effectiveness of schools and corporations to empower their people to be more effective learners and knowledge creators. Novak’s pioneering theory of education presented in the first edition remains viable and useful. This new edition updates his theory for meaningful learning and autonomous knowledge building along with tools to make it operational ─ that is, concept maps, created with the use of CMapTools and the V diagram. The theory is easy to put into practice, since it includes resources to facilitate the process, especially concept maps, now optimised by CMapTools software. CMapTools software is highly intuitive and easy to use. People who have until now been reluctant to use the new technologies in their professional lives are will find this book particularly helpful. Learning, Creating, and Using Knowledge is essential reading for educators at all levels and corporate managers who seek to enhance worker productivity.
This work aims to provide teachers at all levels and in all subjects with a greater range of practical methods for probing their students' understanding. These probes are presented in the manner of a starting set, to act as a stimulus to invention, rather than as a comprehensive list.