Computing in Statistical Science through APL

Computing in Statistical Science through APL

Author: Francis John Anscombe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 440

ISBN-13: 1461394503

DOWNLOAD EBOOK

A t the terminal seated, the answering tone: pond and temple bell. ODAY as in the past, statistical method is profoundly affected by T resources for numerical calculation and visual display. The main line of development of statistical methodology during the first half of this century was conditioned by, and attuned to, the mechanical desk calculator. Now statisticians may use electronic computers of various kinds in various modes, and the character of statistical science has changed accordingly. Some, but not all, modes of modern computation have a flexibility and immediacy reminiscent of the desk calculator. They preserve the virtues of the desk calculator, while immensely exceeding its scope. Prominent among these is the computer language and conversational computing system known by the initials APL. This book is addressed to statisticians. Its first aim is to interest them in using APL in their work-for statistical analysis of data, for numerical support of theoretical studies, for simulation of random processes. In Part A the language is described and illustrated with short examples of statistical calculations. Part B, presenting some more extended examples of statistical analysis of data, has also the further aim of suggesting the interplay of computing and theory that must surely henceforth be typical of the develop ment of statistical science.


Symbolic Computation for Statistical Inference

Symbolic Computation for Statistical Inference

Author: David F. Andrews

Publisher: Oxford University Press, USA

Published: 2000

Total Pages: 184

ISBN-13: 9780198507055

DOWNLOAD EBOOK

Over recent years, developments in statistical computing have freed statisticians from the burden of calculation and have made possible new methods of analysis that previously would have been too difficult or time-consuming. Up till now these developments have been primarily in numerical computation and graphical display, but equal steps forward are now being made in the area of symbolic computing: the use of computer languages and procedures to manipulate expressions. This allows researchers to compute an algebraic expression, rather than evaluate the expression numerically over a given range. This book summarizes a decade of research into the use of symbolic computation applied to statistical inference problems. It shows the considerable potential of the subject to automate statistical calculation, leaving researchers free to concentrate on new concepts. Starting with the development of algorithms applied to standard undergraduate problems, the book then goes on to develop increasingly more powerful tools. Later chapters then discuss the application of these algorithms to different areas of statistical methodology.


Statistical Computing with R

Statistical Computing with R

Author: Maria L. Rizzo

Publisher: CRC Press

Published: 2007-11-15

Total Pages: 412

ISBN-13: 1420010719

DOWNLOAD EBOOK

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditiona


Introductory Statistics with R

Introductory Statistics with R

Author: Peter Dalgaard

Publisher: Springer Science & Business Media

Published: 2008-06-27

Total Pages: 370

ISBN-13: 0387790543

DOWNLOAD EBOOK

This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.


COMPSTAT 2004 - Proceedings in Computational Statistics

COMPSTAT 2004 - Proceedings in Computational Statistics

Author: Jaromir Antoch

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 578

ISBN-13: 3790826561

DOWNLOAD EBOOK

Statistical computing provides the link between statistical theory and applied statistics. The content of the book covers all aspects of this link, from the development and implementation of new statistical ideas to user experiences and software evaluation. The proceedings should appeal to anyone working in statistics and using computers, whether in universities, industrial companies, government agencies, research institutes or as software developers


Elements of Statistical Computing

Elements of Statistical Computing

Author: R.A. Thisted

Publisher: Routledge

Published: 2017-10-19

Total Pages: 456

ISBN-13: 1351452746

DOWNLOAD EBOOK

Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing. The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.


Encyclopedia of Microcomputers

Encyclopedia of Microcomputers

Author: Allen Kent

Publisher: CRC Press

Published: 1992-01-06

Total Pages: 400

ISBN-13: 9780824727086

DOWNLOAD EBOOK

"The Encyclopedia of Microcomputers serves as the ideal companion reference to the popular Encyclopedia of Computer Science and Technology. Now in its 10th year of publication, this timely reference work details the broad spectrum of microcomputer technology, including microcomputer history; explains and illustrates the use of microcomputers throughout academe, business, government, and society in general; and assesses the future impact of this rapidly changing technology."


An Introduction to Statistical Computing

An Introduction to Statistical Computing

Author: Jochen Voss

Publisher: John Wiley & Sons

Published: 2013-08-28

Total Pages: 322

ISBN-13: 1118728025

DOWNLOAD EBOOK

A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course.