Discover the answers to all your computerized trading questions, from basic to advanced, in this ground-breaking new guide to successful day trading. Twenty top experts reveal their techniques and strategies for successful computerized trading in this practical guide.
Electronic and algorithmic trading has become part of a mainstream response to buy-side traders' need to move large blocks of shares with minimum market impact in today's complex institutional trading environment. This book illustrates an overview of key providers in the marketplace. With electronic trading platforms becoming increasingly sophisticated, more cost effective measures handling larger order flow is becoming a reality. The higher reliance on electronic trading has had profound implications for vendors and users of information and trading products. Broker dealers providing solutions through their products are facing changes in their business models such as: relationships with sellside customers, relationships with buyside customers, the importance of broker neutrality, the role of direct market access, and the relationship with prime brokers. Electronic and Algorithmic Trading Technology: The Complete Guide is the ultimate guide to managers, institutional investors, broker dealers, and software vendors to better understand innovative technologies that can cut transaction costs, eliminate human error, boost trading efficiency and supplement productivity. As economic and regulatory pressures are driving financial institutions to seek efficiency gains by improving the quality of software systems, firms are devoting increasing amounts of financial and human capital to maintaining their competitive edge. This book is written to aid the management and development of IT systems for financial institutions. Although the book focuses on the securities industry, its solution framework can be applied to satisfy complex automation requirements within very different sectors of financial services – from payments and cash management, to insurance and securities. Electronic and Algorithmic Trading: The Complete Guide is geared toward all levels of technology, investment management and the financial service professionals responsible for developing and implementing cutting-edge technology. It outlines a complete framework for successfully building a software system that provides the functionalities required by the business model. It is revolutionary as the first guide to cover everything from the technologies to how to evaluate tools to best practices for IT management. - First book to address the hot topic of how systems can be designed to maximize the benefits of program and algorithmic trading - Outlines a complete framework for developing a software system that meets the needs of the firm's business model - Provides a robust system for making the build vs. buy decision based on business requirements
Praise for Algorithmic TRADING “Algorithmic Trading is an insightful book on quantitative trading written by a seasoned practitioner. What sets this book apart from many others in the space is the emphasis on real examples as opposed to just theory. Concepts are not only described, they are brought to life with actual trading strategies, which give the reader insight into how and why each strategy was developed, how it was implemented, and even how it was coded. This book is a valuable resource for anyone looking to create their own systematic trading strategies and those involved in manager selection, where the knowledge contained in this book will lead to a more informed and nuanced conversation with managers.” —DAREN SMITH, CFA, CAIA, FSA, Managing Director, Manager Selection & Portfolio Construction, University of Toronto Asset Management “Using an excellent selection of mean reversion and momentum strategies, Ernie explains the rationale behind each one, shows how to test it, how to improve it, and discusses implementation issues. His book is a careful, detailed exposition of the scientific method applied to strategy development. For serious retail traders, I know of no other book that provides this range of examples and level of detail. His discussions of how regime changes affect strategies, and of risk management, are invaluable bonuses.” —ROGER HUNTER, Mathematician and Algorithmic Trader
The design of trading algorithms requires sophisticated mathematical models backed up by reliable data. In this textbook, the authors develop models for algorithmic trading in contexts such as executing large orders, market making, targeting VWAP and other schedules, trading pairs or collection of assets, and executing in dark pools. These models are grounded on how the exchanges work, whether the algorithm is trading with better informed traders (adverse selection), and the type of information available to market participants at both ultra-high and low frequency. Algorithmic and High-Frequency Trading is the first book that combines sophisticated mathematical modelling, empirical facts and financial economics, taking the reader from basic ideas to cutting-edge research and practice. If you need to understand how modern electronic markets operate, what information provides a trading edge, and how other market participants may affect the profitability of the algorithms, then this is the book for you.
The Science of Algorithmic Trading and Portfolio Management, with its emphasis on algorithmic trading processes and current trading models, sits apart from others of its kind. Robert Kissell, the first author to discuss algorithmic trading across the various asset classes, provides key insights into ways to develop, test, and build trading algorithms. Readers learn how to evaluate market impact models and assess performance across algorithms, traders, and brokers, and acquire the knowledge to implement electronic trading systems. This valuable book summarizes market structure, the formation of prices, and how different participants interact with one another, including bluffing, speculating, and gambling. Readers learn the underlying details and mathematics of customized trading algorithms, as well as advanced modeling techniques to improve profitability through algorithmic trading and appropriate risk management techniques. Portfolio management topics, including quant factors and black box models, are discussed, and an accompanying website includes examples, data sets supplementing exercises in the book, and large projects. - Prepares readers to evaluate market impact models and assess performance across algorithms, traders, and brokers. - Helps readers design systems to manage algorithmic risk and dark pool uncertainty. - Summarizes an algorithmic decision making framework to ensure consistency between investment objectives and trading objectives.
A hands-on guide to the fast and ever-changing world of high-frequency, algorithmic trading Financial markets are undergoing rapid innovation due to the continuing proliferation of computer power and algorithms. These developments have created a new investment discipline called high-frequency trading. This book covers all aspects of high-frequency trading, from the business case and formulation of ideas through the development of trading systems to application of capital and subsequent performance evaluation. It also includes numerous quantitative trading strategies, with market microstructure, event arbitrage, and deviations arbitrage discussed in great detail. Contains the tools and techniques needed for building a high-frequency trading system Details the post-trade analysis process, including key performance benchmarks and trade quality evaluation Written by well-known industry professional Irene Aldridge Interest in high-frequency trading has exploded over the past year. This book has what you need to gain a better understanding of how it works and what it takes to apply this approach to your trading endeavors.
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Learn to trade algorithmically with your existing brokerage, from data management, to strategy optimization, to order execution, using free and publicly available data. Connect to your brokerage’s API, and the source code is plug-and-play. Automated Trading with R explains automated trading, starting with its mathematics and moving to its computation and execution. You will gain a unique insight into the mechanics and computational considerations taken in building a back-tester, strategy optimizer, and fully functional trading platform. The platform built in this book can serve as a complete replacement for commercially available platforms used by retail traders and small funds. Software components are strictly decoupled and easily scalable, providing opportunity to substitute any data source, trading algorithm, or brokerage. This book will: Provide a flexible alternative to common strategy automation frameworks, like Tradestation, Metatrader, and CQG, to small funds and retail traders Offer an understanding of the internal mechanisms of an automated trading system Standardize discussion and notation of real-world strategy optimization problems What You Will Learn Understand machine-learning criteria for statistical validity in the context of time-series Optimize strategies, generate real-time trading decisions, and minimize computation time while programming an automated strategy in R and using its package library Best simulate strategy performance in its specific use case to derive accurate performance estimates Understand critical real-world variables pertaining to portfolio management and performance assessment, including latency, drawdowns, varying trade size, portfolio growth, and penalization of unused capital Who This Book Is For Traders/practitioners at the retail or small fund level with at least an undergraduate background in finance or computer science; graduate level finance or data science students