Computer Vision In Medical Imaging

Computer Vision In Medical Imaging

Author: Chi Hau Chen

Publisher: World Scientific

Published: 2013-11-18

Total Pages: 410

ISBN-13: 9814460958

DOWNLOAD EBOOK

The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.


Advanced Machine Vision Paradigms for Medical Image Analysis

Advanced Machine Vision Paradigms for Medical Image Analysis

Author: Tapan K. Gandhi

Publisher: Academic Press

Published: 2020-08-11

Total Pages: 310

ISBN-13: 0128192968

DOWNLOAD EBOOK

Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to the unstructured nature of medical imaging data and the volume of data produced during routine clinical processes, the applicability of these meta-heuristic algorithms remains to be investigated. Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision techniques can explore texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to already high healthcare costs. - Explores major emerging trends in technology which are supporting the current advancement of medical image analysis with the help of computational intelligence - Highlights the advancement of conventional approaches in the field of medical image processing - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques, as well as their applications in medical image analysis


Medical Computer Vision

Medical Computer Vision

Author: Bjoern Menze

Publisher: Springer

Published: 2011-02-02

Total Pages: 235

ISBN-13: 3642184219

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-workshop proceedings of the International Workshop on Medical Computer Vision, MCV 2010, held in Beijing, China, in September 2010 as a satellite event of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2010. The 10 revised full papers and 11 revised poster papers presented were carefully reviewed and selected from 38 initial submissions. The papers explore the use of modern image recognition technology in tasks such as semantic anatomy parsing, automatic segmentation and quantification, anomaly detection and categorization, data harvesting, semantic navigation and visualization, data organization and clustering, and general-purpose automatic understanding of medical images.


Machine Learning and Medical Imaging

Machine Learning and Medical Imaging

Author: Guorong Wu

Publisher: Academic Press

Published: 2016-08-11

Total Pages: 514

ISBN-13: 0128041145

DOWNLOAD EBOOK

Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques


Computer Vision for Biomedical Image Applications

Computer Vision for Biomedical Image Applications

Author: Yanxi Liu

Publisher: Springer Science & Business Media

Published: 2005-10-10

Total Pages: 577

ISBN-13: 3540294112

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20.


Medical Imaging Systems

Medical Imaging Systems

Author: Andreas Maier

Publisher: Springer

Published: 2018-08-02

Total Pages: 263

ISBN-13: 3319965204

DOWNLOAD EBOOK

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.


Decision Forests for Computer Vision and Medical Image Analysis

Decision Forests for Computer Vision and Medical Image Analysis

Author: Antonio Criminisi

Publisher: Springer Science & Business Media

Published: 2013-01-30

Total Pages: 367

ISBN-13: 1447149297

DOWNLOAD EBOOK

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.


Deep Learning for Medical Image Analysis

Deep Learning for Medical Image Analysis

Author: S. Kevin Zhou

Publisher: Academic Press

Published: 2023-11-23

Total Pages: 544

ISBN-13: 0323858880

DOWNLOAD EBOOK

Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache


Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing

Author: Le Lu

Publisher: Springer

Published: 2017-07-12

Total Pages: 327

ISBN-13: 331942999X

DOWNLOAD EBOOK

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.


Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging

Author: Erik R. Ranschaert

Publisher: Springer

Published: 2019-01-29

Total Pages: 369

ISBN-13: 3319948784

DOWNLOAD EBOOK

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.