Rapid advances in computer technology and the internet have created new opportunities for delivering instruction and revolutionizing the learning environment. This development has been accelerated by the significant reduction in cost of the Internet infrastructure and the easy accessibility of the World Wide Web. This book evaluates the usefulness of advanced learning systems in delivering instructions in a virtual academic environment for different engineering sectors. It aims at providing a deep probe into the most relevant issues in engineering education and digital learning and offers a survey of how digital engineering education has developed, where it stands now, how research in this area has progressed, and what the prospects are for the future.
Systems Engineering Compilation of 37 competencies needed for systems engineering, with information for individuals and organizations on how to identify and assess competence This book provides guidance on how to evaluate proficiency in the competencies defined in the systems engineering competency framework and how to differentiate between proficiency at each of the five levels of proficiency defined within that document. Readers will learn how to create a benchmark standard for each level of proficiency within each competence area, define a set of standardized terminology for competency indicators to promote like-for-like comparison, and provide typical non-domain-specific indicators of evidence which may be used to confirm experience in each competency area. Sample topics covered by the three highly qualified authors include: The five proficiency levels: awareness, supervised practitioner, practitioner, lead practitioner, and expert The numerous knowledge, skills, abilities, and behavior indicators of each proficiency level What an individual needs to know and be able to do in order to behave as an effective systems engineer How to develop training courses, education curricula, job advertisements, job descriptions, and job performance evaluation criteria for system engineering positions For organizations, companies, and individual practitioners of systems engineering, this book is a one-stop resource for considering the competencies defined in the systems engineering competency framework and judging individuals based off them.
Formative Assessment, Learning Data Analytics and Gamification: An ICT Education discusses the challenges associated with assessing student progress given the explosion of e-learning environments, such as MOOCs and online courses that incorporate activities such as design and modeling. This book shows educators how to effectively garner intelligent data from online educational environments that combine assessment and gamification. This data, when used effectively, can have a positive impact on learning environments and be used for building learner profiles, community building, and as a tactic to create a collaborative team. Using numerous illustrative examples and theoretical and practical results, leading international experts discuss application of automatic techniques for e-assessment of learning activities, methods to collect, analyze, and correctly visualize learning data in educational environments, applications, benefits and challenges of using gamification techniques in academic contexts, and solutions and strategies for increasing student participation and performance. - Discusses application of automatic techniques for e-assessment of learning activities - Presents strategies to provide immediate and useful feedback on students' activities - Provides methods to collect, analyze, and correctly visualize learning data in educational environments - Explains the applications, benefits, and challenges of using gamification techniques in academic contexts - Offers solutions to increase students' participation and performance while lowering drop-out rates and retention levels
Suitable as a reference for industry practitioners and as a textbook for classroom use, Case Studies in System of Systems, Enterprise Systems, and Complex Systems Engineering provides a clear understanding of the principles and practice of system of systems engineering (SoSE), enterprise systems engineering (ESE), and complex systems engineering (CSE). Multiple domain practitioners present and analyze case studies from a range of applications that demonstrate underlying principles and best practices of transdisciplinary systems engineering. A number of the case studies focus on addressing real human needs. Diverse approaches such as use of soft systems skills are illustrated, and other helpful techniques are also provided. The case studies describe, examine, analyze, and assess applications across a range of domains, including: Engineering management and systems engineering education Information technology business transformation and infrastructure engineering Cooperative framework for and cost management in the construction industry Supply chain modeling and decision analysis in distribution centers and logistics International development assistance in a foreign culture of education Value analysis in generating electrical energy through wind power Systemic risk and reliability assessment in banking Assessing emergencies and reducing errors in hospitals and health care systems Information fusion and operational resilience in disaster response systems Strategy and investment for capability developments in defense acquisition Layered, flexible, and decentralized enterprise architectures in military systems Enterprise transformation of the air traffic management and transport network Supplying you with a better understanding of SoSE, ESE, and CSE concepts and principles, the book highlights best practices and lessons learned as benchmarks that are applicable to other cases. If adopted correctly, the approaches outlined can facilitate significant progress in human affairs. The study of complex systems is still in its infancy, and it is likely to evolve for decades to come. While this book does not provide all the answers, it does establish a platform, through which analysis and knowledge application can take place and conclusions can be made in order to educate the next generation of systems engineers.
Computer Systems Engineering Management provides a superb guide to the overall effort of computer systemsbridge building. It explains what to do before you get to the river, how to organise your work force, how to manage the construction, and what do when you finally reach the opposite shore. It delineates practical approaches to real-world development issues and problems presents many examples and case histories and explains techniques that apply to everything from microprocessors to mainframes and from person computer applications to extremely sophisticated systems
Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.
Explores how we judge engineering education in order to effectively redesign courses and programs that will prepare new engineers for various professional and academic careers Shows how present approaches to assessment were shaped and what the future holds Analyzes the validity of teaching and judging engineering education Shows the integral role that assessment plays in curriculum design and implementation Examines the sociotechnical system’s impact on engineering curricula
Systems Engineering for the Digital Age Comprehensive resource presenting methods, processes, and tools relating to the digital and model-based transformation from both technical and management views Systems Engineering for the Digital Age: Practitioner Perspectives covers methods and tools that are made possible by the latest developments in computational modeling, descriptive modeling languages, semantic web technologies, and describes how they can be integrated into existing systems engineering practice, how best to manage their use, and how to help train and educate systems engineers of today and the future. This book explains how digital models can be leveraged for enhancing engineering trades, systems risk and maturity, and the design of safe, secure, and resilient systems, providing an update on the methods, processes, and tools to synthesize, analyze, and make decisions in management, mission engineering, and system of systems. Composed of nine chapters, the book covers digital and model-based methods, digital engineering, agile systems engineering, improving system risk, and more, representing the latest insights from research in topics related to systems engineering for complicated and complex systems and system-of-systems. Based on validated research conducted via the Systems Engineering Research Center (SERC), this book provides the reader a set of pragmatic concepts, methods, models, methodologies, and tools to aid the development of digital engineering capability within their organization. Systems Engineering for the Digital Age: Practitioner Perspectives includes information on: Fundamentals of digital engineering, graphical concept of operations, and mission and systems engineering methods Transforming systems engineering through integrating M&S and digital thread, and interactive model centric systems engineering The OODA loop of value creation, digital engineering measures, and model and data verification and validation Digital engineering testbed, transformation, and implications on decision making processes, and architecting tradespace analysis in a digital engineering environment Expedited systems engineering for rapid capability and learning, and agile systems engineering framework Based on results and insights from a research center and providing highly comprehensive coverage of the subject, Systems Engineering for the Digital Age: Practitioner Perspectives is written specifically for practicing engineers, program managers, and enterprise leadership, along with graduate students in related programs of study.
These proceedings showcase the best papers selected from more than 500 submissions, introducing readers to the top research topics and the latest developmental trends in the theory and application of Man-Machine-Environment System Engineering (MMESE). This research topic was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!” MMESE primarily focuses on the relationship between Man, Machine and Environment, studying the optimum combination of related Man-Machine-Environment systems. In this paradigm, “Man” refers to working people as the subject at the workplace (e.g. operators, decision-makers); “Machine” is the general name for any object controlled by Man (including tools, machinery, computers, systems and technologies), and “Environment” describes the specific working conditions under which Man and Machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). In turn, the three goals of optimization are to ensure safety, efficiency and economy in this context. These proceedings present interdisciplinary studies on the concepts and methods of physiology, psychology, system engineering, computer science, environmental science, management, education, and other related disciplines. They offer a valuable resource for all researchers and professionals whose work involves interdisciplinary areas touching on MMESE subjects.
Integrate critical roles to improve overall performance in complex engineering projects Integrating Program Management and Systems Engineering shows how organizations can become more effective, more efficient, and more responsive, and enjoy better performance outcomes. The discussion begins with an overview of key concepts, and details the challenges faced by System Engineering and Program Management practitioners every day. The practical framework that follows describes how the roles can be integrated successfully to streamline project workflow, with a catalog of tools for assessing and deploying best practices. Case studies detail how real-world companies have successfully implemented the framework to improve cost, schedule, and technical performance, and coverage of risk management throughout helps you ensure the success of your organization's own integration strategy. Available course outlines and PowerPoint slides bring this book directly into the academic or corporate classroom, and the discussion's practical emphasis provides a direct path to implementation. The integration of management and technical work paves the way for smoother projects and more positive outcomes. This book describes the integrated goal, and provides a clear framework for successful transition. Overcome challenges and improve cost, schedule, and technical performance Assess current capabilities and build to the level your organization needs Manage risk throughout all stages of integration and performance improvement Deploy best practices for teams and systems using the most effective tools Complex engineering systems are prone to budget slips, scheduling errors, and a variety of challenges that affect the final outcome. These challenges are a sign of failure on the part of both management and technical, but can be overcome by integrating the roles into a cohesive unit focused on delivering a high-value product. Integrating Program Management with Systems Engineering provides a practical route to better performance for your organization as a whole.