This unique book provides a comprehensive introduction to computational mathematics, which forms an essential part of contemporary numerical algorithms, scientific computing and optimization. It uses a theorem-free approach with just the right balance between mathematics and numerical algorithms. This edition covers all major topics in computational mathematics with a wide range of carefully selected numerical algorithms, ranging from the root-finding algorithm, numerical integration, numerical methods of partial differential equations, finite element methods, optimization algorithms, stochastic models, nonlinear curve-fitting to data modelling, bio-inspired algorithms and swarm intelligence. This book is especially suitable for both undergraduates and graduates in computational mathematics, numerical algorithms, scientific computing, mathematical programming, artificial intelligence and engineering optimization. Thus, it can be used as a textbook and/or reference book.
This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
This book constitutes the refereed proceedings of the 14th International Conference on Intelligent Computer Mathematics, CICM 2021, held in Timisoara, Romania, in July 2021*. The 12 full papers, 7 system descriptions, 1 system entry, and 3 abstracts of invited papers presented were carefully reviewed and selected from a total of 38 submissions. The papers focus on advances in formalization, automatic theorem proving and learning, search and classification, teaching and geometric reasoning, and logic and systems, among other topics. * The conference was held virtually due to the COVID-19 pandemic.
This book corresponds to a mathematical course given in 1986/87 at the University Louis Pasteur, Strasbourg. This work is primarily intended for graduate students. The following are necessary prerequisites : a few standard definitions in set theory, the definition of rational integers, some elementary facts in Combinatorics (maybe only Newton's binomial formula), some theorems of Analysis at the level of high schools, and some elementary Algebra (basic results about groups, rings, fields and linear algebra). An important place is given to exercises. These exercises are only rarely direct applications of the course. More often, they constitute complements to the text. Mostly, hints or references are given so that the reader should be able to find solutions. Chapters one and two deal with elementary results of Number Theory, for example : the euclidean algorithm, the Chinese remainder theorem and Fermat's little theorem. These results are useful by themselves, but they also constitute a concrete introduction to some notions in abstract algebra (for example, euclidean rings, principal rings ... ). Algorithms are given for arithmetical operations with long integers. The rest of the book, chapters 3 through 7, deals with polynomials. We give general results on polynomials over arbitrary rings. Then polynomials with complex coefficients are studied in chapter 4, including many estimates on the complex roots of polynomials. Some of these estimates are very useful in the subsequent chapters.
Computer science abounds with applications of discrete mathematics, yet s- dents of computer science often study discrete mathematics in the context of purely mathematical applications. They have to ?gure out for themselves how to apply the ideas of discrete mathematics to computing problems. It is not easy. Most students fail to experience broad success in this enterprise, which is not surprising, since many of the most important advances in science and engineeringhavebeen, precisely, applicationsofmathematicstospeci?cscience and engineering problems. Tobesure,mostdiscretemathtextbooksincorporatesomeaspectsapplying discrete math to computing, but it usually takes the form of asking students to write programs to compute the number of three-ball combinations there are in a set of ten balls or, at best, to implement a graph algorithm. Few texts ask students to use mathematical logic to analyze properties of digital circuits or computer programs or to apply the set theoretic model of functions to understand higher-order operations. A major aim of this text is to integrate, tightly, the study of discrete mathematics with the study of central problems of computer science.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.
This book gathers thousands of up-to-date equations, formulas, tables, illustrations, and explanations into one invaluable volume. It includes over a thousand pages of mathematical material as well as chapters on probability, mathematical statistics, fuzzy logic, and neural networks. It also contains computer language overviews of C, Fortran, and Pascal.