A workshop guide for mathematics and science educators at all grade levels. Requires two and three-quarters hours to complete. Looseleaf in 3-ring binder. Illustrated. 8 1/2 x 11'
Why so few African American and Latino/a students study computer science: updated edition of a book that reveals the dynamics of inequality in American schools. The number of African Americans and Latino/as receiving undergraduate and advanced degrees in computer science is disproportionately low. And relatively few African American and Latino/a high school students receive the kind of institutional encouragement, educational opportunities, and preparation needed for them to choose computer science as a field of study and profession. In Stuck in the Shallow End, Jane Margolis and coauthors look at the daily experiences of students and teachers in three Los Angeles public high schools: an overcrowded urban high school, a math and science magnet school, and a well-funded school in an affluent neighborhood. They find an insidious “virtual segregation” that maintains inequality. The race gap in computer science, Margolis discovers, is one example of the way students of color are denied a wide range of occupational and educational futures. Stuck in the Shallow End is a story of how inequality is reproduced in America—and how students and teachers, given the necessary tools, can change the system. Since the 2008 publication of Stuck in the Shallow End, the book has found an eager audience among teachers, school administrators, and academics. This updated edition offers a new preface detailing the progress in making computer science accessible to all, a new postscript, and discussion questions (coauthored by Jane Margolis and Joanna Goode).
Each teacher and student brings many identities to the classroom. What is their impact on the student’s learning and the teacher’s teaching of mathematics? This book invites K–8 teachers to reflect on their own and their students’ multiple identities. Rich possibilities for learning result when teachers draw on these identities to offer high-quality, equity-based teaching to all students. Reflecting on identity and re-envisioning learning and teaching through this lens especially benefits students who have been marginalized by race, class, ethnicity, or gender. The authors encourage teachers to reframe instruction by using five equity-based mathematics teaching practices: Going deep with mathematics; leveraging multiple mathematical competencies; affirming mathematics learners’ identities; challenging spaces of marginality; and drawing on multiple resources of knowledge. Special features of the book: Classroom vignettes, lessons, and assessments showing equity-based practices Tools for teachers’ self-reflection and professional development, including a mathematics learning autobiography and teacher identity activity at nctm.org/more4u Suggestions for partnering with parents and community organisations End-of-chapter discussion questions
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
Common Core education standards establish a clear set of specific ideas and skills that all students should be able comprehend at each grade level. In an effort to meet these standards, educators are turning to technology for improved learning outcomes. Cases on Technology and Common Core Mathematics provides a compilation of cases and vignettes about the application of technology in the classroom in order to enhance student understanding of math concepts. This book is a timely reference source for mathematics educators, educational technologists, and school district leaders employed in the mathematics education or educational technology fields.
Use the powerful strategies of play and storytelling to help young children develop their "math brains." This easy-to-use resource includes fun activities, routines, and games inspired by children's books that challenge children to recognize and think more logically about the math all around them.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.