Please note this is a Short Discount publication. This year's edition of Computer Architecture Technology Trends analyses the trends which are taking place in the architecture of computing systems today. Due to the sheer number of different applications to which computers are being applied, there seems no end to the different adoptions which proliferate. There are, however, some underlying trends which appear. Decision makers should be aware of these trends when specifying architectures, particularly for future applications. This report is fully revised and updated and provides insight into the fundamentals of computer architecture – what it is, and how it is applied to fit a particular problem definition. Also discussed is where the future leads, given current trends in computer architecture.
The computing world is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation. This book focuses on the shift, exploring the ways in which software and technology in the 'cloud' are accessed by cell phones, tablets, laptops, and more
The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud
This book outlines a set of issues that are critical to all of parallel architecture--communication latency, communication bandwidth, and coordination of cooperative work (across modern designs). It describes the set of techniques available in hardware and in software to address each issues and explore how the various techniques interact.
Fueled by ubiquitous computing ambitions, the edge is at the center of confluence of many emergent technological trends such as hardware-rooted trust and code integrity, 5G, data privacy and sovereignty, blockchains and distributed ledgers, ubiquitous sensors and drones, autonomous systems and real-time stream processing. Hardware and software pattern maturity have reached a tipping point so that scenarios like smart homes, smart factories, smart buildings, smart cities, smart grids, smart cars, smart highways are in reach of becoming a reality. While there is a great desire to bring born-in-the-cloud patterns and technologies such as zero-downtime software and hardware updates/upgrades to the edge, developers and operators alike face a unique set of challenges due to environmental differences such as resource constraints, network availability and heterogeneity of the environment. The first part of the book discusses various edge computing patterns which the authors have observed, and the reasons why these observations have led them to believe that there is a need for a new architectural paradigm for the new problem domain. Edge computing is examined from the app designer and architect’s perspectives. When they design for edge computing, they need a new design language that can help them to express how capabilities are discovered, delivered and consumed, and how to leverage these capabilities regardless of location and network connectivity. Capability-Oriented Architecture is designed to provide a framework for all of these. This book is for everyone who is interested in understanding what ubiquitous and edge computing means, why it is growing in importance and its opportunities to you as a technologist or decision maker. The book covers the broad spectrum of edge environments, their challenges and how you can address them as a developer or an operator. The book concludes with an introduction to a new architectural paradigm called capability-based architecture, which takes into consideration the capabilities provided by an edge environment. .
This best-selling title, considered for over a decade to be essential reading for every serious student and practitioner of computer design, has been updated throughout to address the most important trends facing computer designers today. In this edition, the authors bring their trademark method of quantitative analysis not only to high performance desktop machine design, but also to the design of embedded and server systems. They have illustrated their principles with designs from all three of these domains, including examples from consumer electronics, multimedia and web technologies, and high performance computing. The book retains its highly rated features: Fallacies and Pitfalls, which share the hard-won lessons of real designers; Historical Perspectives, which provide a deeper look at computer design history; Putting it all Together, which present a design example that illustrates the principles of the chapter; Worked Examples, which challenge the reader to apply the concepts, theories and methods in smaller scale problems; and Cross-Cutting Issues, which show how the ideas covered in one chapter interact with those presented in others. In addition, a new feature, Another View, presents brief design examples in one of the three domains other than the one chosen for Putting It All Together. The authors present a new organization of the material as well, reducing the overlap with their other text, Computer Organization and Design: A Hardware/Software Approach 2/e, and offering more in-depth treatment of advanced topics in multithreading, instruction level parallelism, VLIW architectures, memory hierarchies, storage devices and network technologies. Also new to this edition, is the adoption of the MIPS 64 as the instruction set architecture. In addition to several online appendixes, two new appendixes will be printed in the book: one contains a complete review of the basic concepts of pipelining, the other provides solutions a selection of the exercises. Both will be invaluable to the student or professional learning on her own or in the classroom. Hennessy and Patterson continue to focus on fundamental techniques for designing real machines and for maximizing their cost/performance. * Presents state-of-the-art design examples including: * IA-64 architecture and its first implementation, the Itanium * Pipeline designs for Pentium III and Pentium IV * The cluster that runs the Google search engine * EMC storage systems and their performance * Sony Playstation 2 * Infiniband, a new storage area and system area network * SunFire 6800 multiprocessor server and its processor the UltraSPARC III * Trimedia TM32 media processor and the Transmeta Crusoe processor * Examines quantitative performance analysis in the commercial server market and the embedded market, as well as the traditional desktop market. Updates all the examples and figures with the most recent benchmarks, such as SPEC 2000. * Expands coverage of instruction sets to include descriptions of digital signal processors, media processors, and multimedia extensions to desktop processors. * Analyzes capacity, cost, and performance of disks over two decades. Surveys the role of clusters in scientific computing and commercial computing. * Presents a survey, taxonomy, and the benchmarks of errors and failures in computer systems. * Presents detailed descriptions of the design of storage systems and of clusters. * Surveys memory hierarchies in modern microprocessors and the key parameters of modern disks. * Presents a glossary of networking terms.
The Architecture of Computer Hardware, Systems Software and Networking is designed help students majoring in information technology (IT) and information systems (IS) understand the structure and operation of computers and computer-based devices. Requiring only basic computer skills, this accessible textbook introduces the basic principles of system architecture and explores current technological practices and trends using clear, easy-to-understand language. Throughout the text, numerous relatable examples, subject-specific illustrations, and in-depth case studies reinforce key learning points and show students how important concepts are applied in the real world. This fully-updated sixth edition features a wealth of new and revised content that reflects today’s technological landscape. Organized into five parts, the book first explains the role of the computer in information systems and provides an overview of its components. Subsequent sections discuss the representation of data in the computer, hardware architecture and operational concepts, the basics of computer networking, system software and operating systems, and various interconnected systems and components. Students are introduced to the material using ideas already familiar to them, allowing them to gradually build upon what they have learned without being overwhelmed and develop a deeper knowledge of computer architecture.
In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics.
VLSI Electronics Microstructure Science, Volume 20: VLSI and Computer Architecture reviews the approaches in design principles and techniques and the architecture for computer systems implemented in VLSI. This volume is divided into two parts. The first section is concerned with system design. Chapters under this section focus on the discussion of such topics as the evolution of VLSI; system performance and processor design considerations; and VLSI system design and processing tools. Part II of the book focuses on the architectural possibilities that have become cost effective with the development of VLSI circuits. Topics on architectural requirements and various architectures such as the Reduced Instruction Set, Extended Von Neumann, Language-Oriented, and Microprogrammable architectures are elaborated in detail. Also included are chapters that discuss the evaluation of architecture, multiprocessing configurations, and the future of VLSI. Computer designers, those evaluating computer systems, researchers, and students of computer architecture will find the book very useful.