This book starts with an overview of the research of Gröbner bases which have many applications in various areas of mathematics since they are a general tool for the investigation of polynomial systems. The next chapter describes algorithms in invariant theory including many examples and time tables. These techniques are applied in the chapters on symmetric bifurcation theory and equivariant dynamics. This combination of different areas of mathematics will be interesting to researchers in computational algebra and/or dynamics.
The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.
This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.
This is the second volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician.
This fascinating volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, and graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology. Eigenvectors of graph Laplacians may seem a surprising topic for a book, but the authors show that there are subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs.
This book constitutes the proceedings of the 14th International Workshop on Computer Algebra in Scientific Computing, CASC 2013, held in Berlin, Germany, in September 2013. The 33 full papers presented were carefully reviewed and selected for inclusion in this book. The papers address issues such as polynomial algebra; the solution of tropical linear systems and tropical polynomial systems; the theory of matrices; the use of computer algebra for the investigation of various mathematical and applied topics related to ordinary differential equations (ODEs); applications of symbolic computations for solving partial differential equations (PDEs) in mathematical physics; problems arising at the application of computer algebra methods for finding infinitesimal symmetries; applications of symbolic and symbolic-numeric algorithms in mechanics and physics; automatic differentiation; the application of the CAS Mathematica for the simulation of quantum error correction in quantum computing; the application of the CAS GAP for the enumeration of Schur rings over the group A5; constructive computation of zero separation bounds for arithmetic expressions; the parallel implementation of fast Fourier transforms with the aid of the Spiral library generation system; the use of object-oriented languages such as Java or Scala for implementation of categories as type classes; a survey of industrial applications of approximate computer algebra.
These notes deal with deformation theory of complex analytic singularities and related objects. The first part treats general theory. The central notion is that of versal deformation in several variants. The theory is developed both in an abstract way and in a concrete way suitable for computations. The second part deals with more specific problems, specially on curves and surfaces. Smoothings of singularities are the main concern. Examples are spread throughout the text.
These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.