Written by world-renowned experts, the book is a collection of tutorial presentations and research papers catering to the latest advances in symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. The papers were presented at a workshop celebrating the 60th birthday of Sergei Abramov (Russia), whose highly influential contributions to symbolic methods are adopted in many leading computer algebra systems.
Written by world-renowned experts, the book is a collection of tutorial presentations and research papers catering to the latest advances in symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. The papers were presented at a workshop celebrating the 60th birthday of Sergei Abramov (Russia), whose highly influential contributions to symbolic methods are adopted in many leading computer algebra systems.
As computers and communications technology advance, greater opportunities arise for intelligent mathematical computation. While computer algebra, au- mated deduction and mathematical publishing each have long and successful histories, we are now seeing increasing opportunities for synergy among them. The Conferences on Intelligent Computer Mathematics (cicm 2009) is a c- lection of co-located meetings, allowing researchers and practitioners active in these related areas to share recent results and identify the next challenges. The speci?c areas of the cicm conferences and workshops are described below, but the unifying theme is the computerized handling of mathematical knowledge. The successful formalization of much of mathematics, as well as a better - derstanding of its internal structure, makes mathematical knowledge in many waysmore tractable than generalknowledge,as traditionally treatedin arti?cial intelligence. Similarly, we can also expect the problem of e?ectively using ma- ematical knowledge in automated ways to be much more tractable. This is the goal of the work in the cicm conferences and workshops. In the long view, so- ing the problems addressed by cicm is an important milestone in formulating the next generation of mathematical software.
Written by world-renowned experts, the book is a collection of tutorial presentations and research papers catering to the latest advances in symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. The papers were presented at a workshop celebrating the 60th birthday of Sergei Abramov (Russia), whose highly influential contributions to symbolic methods are adopted in many leading computer algebra systems.
This book presents a selection of papers based on the XXXIII Białowieża Workshop on Geometric Methods in Physics, 2014. The Białowieża Workshops are among the most important meetings in the field and attract researchers from both mathematics and physics. The articles gathered here are mathematically rigorous and have important physical implications, addressing the application of geometry in classical and quantum physics. Despite their long tradition, the workshops remain at the cutting edge of ongoing research. For the last several years, each Białowieża Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented; some of the lectures are reproduced here. The unique atmosphere of the workshop and school is enhanced by its venue, framed by the natural beauty of the Białowieża forest in eastern Poland. The volume will be of interest to researchers and graduate students in mathematical physics, theoretical physics and mathematmtics.
Time delays are present in many physical processes due to the period of time it takes for the events to occur. Delays are particularly more pronounced in networks of interconnected systems, such as supply chains and systems controlled over c- munication networks. In these control problems, taking the delays into account is particularly important for performance evaluation and control system’s design. It has been shown, indeed, that delays in a controlled system (for instance, a c- munication delay for data acquisition) may have an “ambiguous” nature: they may stabilize the system, or, in the contrary,they may lead to deteriorationof the clos- loop performance or even instability, depending on the delay value and the system parameters. It is a fact that delays have stabilizing effects, but this is clearly con i- ing for human intuition. Therefore,speci c analysis techniquesand design methods are to be developed to satisfactorily take into account the presence of delays at the design stage of the control system. The research on time delay systems stretches back to 1960s and it has been very active during the last twenty years. During this period, the results have been presented at the main control conferences(CDC, ACC, IFAC), in specialized wo- shops (IFAC TDS series), and published in the leading journals of control engine- ing, systems and control theory, applied and numerical mathematics.
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from applied and computational geometry to computer algebra methods used for total variation energy minimization.
This book constitutes the proceedings of the 5th International Meeting on Algebraic and Algorithmic Aspects of Differential and Integral Operators, AADIOS 2012, held at the Applications of Computer Algebra Conference in Sofia, Bulgaria, on June 25-28, 2012. The total of 9 papers presented in this volume consists of 2 invited papers and 7 regular papers which were carefully reviewed and selected from 13 submissions. The topics of interest are: symbolic computation for operator algebras, factorization of differential/integral operators, linear boundary problems and green's operators, initial value problems for differential equations, symbolic integration and differential galois theory, symbolic operator calculi, algorithmic D-module theory, rota-baxter algebra, differential algebra, as well as discrete analogs and software aspects of the above.
This book constitutes the proceedings of the 19th International Workshop on Computer Algebra in Scientific Computing, CASC 2017, held in Beijing, China, in September 2017. The 28 full papers presented in this volume were carefully reviewed and selected from 33 submissions. They deal with cutting-edge research in all major disciplines of Computer Algebra.
This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016. This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.