Computational Nanomedicine and Nanotechnology

Computational Nanomedicine and Nanotechnology

Author: Renat R. Letfullin

Publisher: Springer

Published: 2017-02-10

Total Pages: 697

ISBN-13: 3319435779

DOWNLOAD EBOOK

This textbook, aimed at advanced undergraduate and graduate students, introduces the basic knowledge required for nanomedicine and nanotechnology, and emphasizes how the combined use of chemistry and light with nanoparticles can serve as treatments and therapies for cancer. This includes nanodevices, nanophototherapies, nanodrug design, and laser heating of nanoparticles and cell organelles. In addition, the book covers the emerging fields of nanophotonics and nanoplasmonics, which deal with nanoscale confinement of radiation and optical interactions on a scale much smaller than the wavelength of the light. The applications of nanophotonics and nanoplasmonics to biomedical research discussed in the book range from optical biosensing to photodynamic therapies.Cutting-edge and reflective of the multidisciplinary nature of nanomedicine, this book effectively combines knowledge and modeling from nanoscience, medicine, biotechnology, physics, optics, engineering, and pharmacy in an easily digestible format. Among the topics covered in-depth are:• The structure of cancer cells and their properties, as well as techniques for selective targeting of cancer and gene therapy.• Nanoplasmonics: Lorentz-Mie simulations of optical properties of nanoparticles and the use of plasmonic nanoparticles in diagnosis and therapy.• Nanophotonics: short and ultrashort laser pulse interactions with nanostructures, time and space simulations of thermal fields in and around the nanobioparticles, and nanoclusters heated by radiation.• Modeling of soft and hard biological tissue ablation by activated nanoparticles, as well as optical, thermal, kinetic, and dynamic modeling.• Detection techniques, including the design and methods of activation of nanodrugs and plasmon resonance detection techniques.• Design and fabrication of nanorobots and nanoparticles.• Effective implementation of nanotherapy treatments.• Nanoheat transfer, particularly the heating and cooling kinetics of nanoparticles.• ...and more!Each chapter contains a set of lectures in the form of text for student readers and PowerPoints for use by instructors, as well as homework exercises. Selected chapters also contain computer practicums, including Maple codes and worked-out examples. This book helps readers become more knowledgeable and versant in nanomedicine and nanotechnology, inspires readers to work creatively and go beyond the ideas and topics presented within, and is sufficiently comprehensive to be of value to research scientists as well as students.


Computational Nanotechnology

Computational Nanotechnology

Author: Sarhan M. Musa

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 537

ISBN-13: 1439841772

DOWNLOAD EBOOK

Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required to achieve a more robust quantitative understanding of matter at the nanoscale. Computational Nanotechnology: Modeling and Applications with MATLAB® provides expert insights into current and emerging methods, opportunities, and challenges associated with the computational techniques involved in nanoscale research. Written by, and for, those working in the interdisciplinary fields that comprise nanotechnology—including engineering, physics, chemistry, biology, and medicine—this book covers a broad spectrum of technical information, research ideas, and practical knowledge. It presents an introduction to computational methods in nanotechnology, including a closer look at the theory and modeling of two important nanoscale systems: molecular magnets and semiconductor quantum dots. Topics covered include: Modeling of nanoparticles and complex nano and MEMS systems Theory associated with micromagnetics Surface modeling of thin films Computational techniques used to validate hypotheses that may not be accessible through traditional experimentation Simulation methods for various nanotubes and modeling of carbon nanotube and silicon nanowire transistors In regard to applications of computational nanotechnology in biology, contributors describe tracking of nanoscale structures in cells, effects of various forces on cellular behavior, and use of protein-coated gold nanoparticles to better understand protein-associated nanomaterials. Emphasizing the importance of MATLAB for biological simulations in nanomedicine, this wide-ranging survey of computational nanotechnology concludes by discussing future directions in the field, highlighting the importance of the algorithms, modeling software, and computational tools in the development of efficient nanoscale systems.


Computational Nanoscience

Computational Nanoscience

Author: Elena Bichoutskaia

Publisher: Royal Society of Chemistry

Published: 2011-06-09

Total Pages: 445

ISBN-13: 184973268X

DOWNLOAD EBOOK

Nanoscience is one of the most exciting areas of modern physical science as it encompasses a range of techniques rather than a single discipline. It stretches across the whole spectrum of science including: medicine and health, physics, engineering and chemistry. Providing a deep understanding of the behaviour of matter at the scale of individual atoms and molecules, it provides a crucial step towards future applications of nanotechnology. The remarkable improvements in both theoretical methods and computational techniques make it possible for modern computational nanoscience to achieve a new level of chemical accuracy. It is now a discipline capable of leading and guiding experimental efforts rather than just following others. Computational Nanoscience addresses modern challenges in computational science, within the context of the rapidly evolving field of nanotechnology. It satisfies the need for a comprehensive, yet concise and up-to-date, survey of new developments and applications presented by the world's leading academics. It documents major, recent advances in scientific computation, mathematical models and theory development that specifically target the applications in nanotechnology. Suitable for theoreticians, researchers and students, the book shows readers what computational nanoscience can achieve, and how it may be applied in their own work. The twelve chapters cover topics including the concepts behind recent breakthroughs, the development of cutting edge simulation tools, and the variety of new applications.


Computational Finite Element Methods in Nanotechnology

Computational Finite Element Methods in Nanotechnology

Author: Sarhan M. Musa

Publisher: CRC Press

Published: 2012-10-19

Total Pages: 647

ISBN-13: 1439893233

DOWNLOAD EBOOK

Computational Finite Element Methods in Nanotechnology demonstrates the capabilities of finite element methods in nanotechnology for a range of fields. Bringing together contributions from researchers around the world, it covers key concepts as well as cutting-edge research and applications to inspire new developments and future interdisciplinary research. In particular, it emphasizes the importance of finite element methods (FEMs) for computational tools in the development of efficient nanoscale systems. The book explores a variety of topics, including: A novel FE-based thermo-electrical-mechanical-coupled model to study mechanical stress, temperature, and electric fields in nano- and microelectronics The integration of distributed element, lumped element, and system-level methods for the design, modeling, and simulation of nano- and micro-electromechanical systems (N/MEMS) Challenges in the simulation of nanorobotic systems and macro-dimensions The simulation of structures and processes such as dislocations, growth of epitaxial films, and precipitation Modeling of self-positioning nanostructures, nanocomposites, and carbon nanotubes and their composites Progress in using FEM to analyze the electric field formed in needleless electrospinning How molecular dynamic (MD) simulations can be integrated into the FEM Applications of finite element analysis in nanomaterials and systems used in medicine, dentistry, biotechnology, and other areas The book includes numerous examples and case studies, as well as recent applications of microscale and nanoscale modeling systems with FEMs using COMSOL Multiphysics® and MATLAB®. A one-stop reference for professionals, researchers, and students, this is also an accessible introduction to computational FEMs in nanotechnology for those new to the field.


Computational Approaches in Biomedical Nano-Engineering

Computational Approaches in Biomedical Nano-Engineering

Author: Ayesha Sohail

Publisher: John Wiley & Sons

Published: 2019-01-14

Total Pages: 296

ISBN-13: 3527344713

DOWNLOAD EBOOK

This book comprehensively and systematically treats modern understanding of the Nano-Bio-Technology and its therapeutic applications. The contents range from the nanomedicine, imaging, targeted therapeutic applications, experimental results along with modelling approaches. It will provide the readers with fundamentals on computational and modelling aspects of advanced nano-materials and nano-technology specifically in the field of biomedicine, and also provide the readers with inspirations for new development of diagnostic imaging and targeted therapeutic applications.


Computational Nanotoxicology

Computational Nanotoxicology

Author: Agnieszka Gajewicz

Publisher: CRC Press

Published: 2019-11-13

Total Pages: 570

ISBN-13: 1000680886

DOWNLOAD EBOOK

The development of computational methods that support human health and environmental risk assessment of engineered nanomaterials (ENMs) has attracted great interest because the application of these methods enables us to fill existing experimental data gaps. However, considering the high degree of complexity and multifunctionality of ENMs, computational methods originally developed for regular chemicals cannot always be applied explicitly in nanotoxicology. This book discusses the current state of the art and future needs in the development of computational modeling techniques for nanotoxicology. It focuses on (i) computational chemistry (quantum mechanics, semi-empirical methods, density functional theory, molecular mechanics, molecular dynamics), (ii) nanochemoinformatic methods (quantitative structure–activity relationship modeling, grouping, read-across), and (iii) nanobioinformatic methods (genomics, transcriptomics, proteomics, metabolomics). It reviews methods of calculating molecular descriptors sufficient to characterize the structure of nanoparticles, specifies recent trends in the validation of computational methods, and discusses ways to cope with the uncertainty of predictions. In addition, it highlights the status quo and further challenges in the application of computational methods in regulation (e.g., REACH, OECD) and in industry for product development and optimization and the future directions for increasing acceptance of computational modeling for nanotoxicology.


Handbook of Theoretical and Computational Nanotechnology: Bioinformatics, nanomedicine, and drug design

Handbook of Theoretical and Computational Nanotechnology: Bioinformatics, nanomedicine, and drug design

Author: Michael Rieth

Publisher:

Published: 2006

Total Pages: 872

ISBN-13: 9781588830487

DOWNLOAD EBOOK

Volume 1: Basic Concepts, Nanomachines and Bionanodevices; Volume 2: Atomistic Simulations - Algorithms and Methods; Volume 3: Quantum and Molecular Computing, and Quantum Simulations; Volume 4: Nanomechanics and Multiscale Modeling; Volume 5: Transport Phenomena and Nanoscale Processes; Volume 6: Bioinformatics, Nanomedicine and Drug Delivery; Volume 7: Magnetic Nanostructures and Nano-optics; Volume 8: Functional Nanomaterials, Nanoparticles and Polymer Nanostructures; Volume 9: Nanocomposites, Nano-Assemblies, and Nanosurfaces; Volume 10: Nanodevice Modeling and Nanoelectronics.


Nanoscience and Nanoengineering

Nanoscience and Nanoengineering

Author: Ajit D. Kelkar

Publisher: CRC Press

Published: 2014-05-28

Total Pages: 336

ISBN-13: 1482231190

DOWNLOAD EBOOK

Reflecting the breadth of the field from research to manufacturing, Nanoscience and Nanoengineering: Advances and Applications delivers an in-depth survey of emerging, high-impact nanotechnologies. Written by a multidisciplinary team of scientists and engineers and edited by prestigious faculty of the Joint School of Nanoscience and Nanoengineering, this book focuses on important breakthroughs in nanoelectronics, nanobiology, nanomedicine, nanomodeling, nanolithography, nanofabrication, and nanosafety. This authoritative text: Addresses concerns regarding the use of nanomaterials Discusses the advantages of nanocomposites versus conventional materials Explores self-assembly and its potential for nanomanufacturing applications Covers compound semiconductors and their applications in communications Considers display technology and infrared optics in relation to nanoelectronics Explains how computational nanotechnology is critical to the design of process materials and nanobiotechnologies Describes the design and fabrication of nanoelectromechanical systems (NEMS) and their applications in nanomedicine By seamlessly integrating interdisciplinary foundational science with state-of-the-art engineering tools, Nanoscience and Nanoengineering: Advances and Applications offers a holistic approach to understanding the mechanisms underpinning the nanotechnology-based products we enjoy today, as well as those that will change our society in the near future.


Computational Nanotechnology Using Finite Difference Time Domain

Computational Nanotechnology Using Finite Difference Time Domain

Author: Sarhan M. Musa

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 428

ISBN-13: 1351831739

DOWNLOAD EBOOK

The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe. Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts. Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.