Computational Multiphase Geomechanics

Computational Multiphase Geomechanics

Author: Fusao Oka

Publisher: CRC Press

Published: 2021-11-21

Total Pages: 354

ISBN-13: 1000474992

DOWNLOAD EBOOK

Numerical methods are very powerful tools for use in geotechnical engineering, particularly in computational geotechnics. Interest is strong in the new field of multi-phase nature of geomaterials, and the area of computational geotechnics is expanding. Alongside their companion volume Computational Modeling of Multiphase Geomaterials (CRC Press, 2012), Fusao Oka and Sayuri Kimoto cover recent progress in several key areas, such as air-water-soil mixture, cyclic constitutive models, anisotropic models, noncoaxial models, gradient models, compaction bands (a form of volumetric strain localization and strain localization under dynamic conditions), and the instability of unsaturated soils. The text also includes applications of computational modeling to large-scale excavation of ground, liquefaction analysis of levees during earthquakes, methane hydrate development, and the characteristics of contamination using bentonite. The erosion of embankments due to seepage flow is also presented.


Computational Modeling of Multiphase Geomaterials

Computational Modeling of Multiphase Geomaterials

Author: Fusao Oka

Publisher: CRC Press

Published: 2012-07-05

Total Pages: 413

ISBN-13: 0415809274

DOWNLOAD EBOOK

Computational Modeling of Multiphase Geomaterials discusses how numerical methods play a very important role in geotechnical engineering and in the related activity of computational geotechnics. It shows how numerical methods and constitutive modeling can help predict the behavior of geomaterials such as soil and rock. After presenting the fundamentals of continuum mechanics, the book explores recent advances in the use of modeling and numerical methods for multiphase geomaterial applications. The authors describe the constitutive modeling of soils for rate-dependent behavior, strain localization, multiphase theory, and applications in the context of large deformations. They also emphasize viscoplasticity and water–soil coupling. Drawing on the authors’ well-regarded work in the field, this book provides you with the knowledge and tools to tackle problems in geomechanics. It gives you a comprehensive understanding of how to apply continuum mechanics, constitutive modeling, finite element analysis, and numerical methods to predict the behavior of soil and rock.


Challenges and Innovations in Geomechanics

Challenges and Innovations in Geomechanics

Author: Marco Barla

Publisher: Springer Nature

Published: 2021-01-14

Total Pages: 1124

ISBN-13: 3030645185

DOWNLOAD EBOOK

This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.


Challenges and Innovations in Geomechanics

Challenges and Innovations in Geomechanics

Author: Marco Barla

Publisher: Springer Nature

Published: 2021-01-14

Total Pages: 1029

ISBN-13: 3030645142

DOWNLOAD EBOOK

This book gathers the latest advances, innovations, and applications in the field of computational geomechanics, as presented by international researchers and engineers at the 16th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG 2020/21). Contributions include a wide range of topics in geomechanics such as: monitoring and remote sensing, multiphase modelling, reliability and risk analysis, surface structures, deep structures, dams and earth structures, coastal engineering, mining engineering, earthquake and dynamics, soil-atmosphere interaction, ice mechanics, landfills and waste disposal, gas and petroleum engineering, geothermal energy, offshore technology, energy geostructures, geomechanical numerical models and computational rail geotechnics.


Computational Geomechanics

Computational Geomechanics

Author: Andrew H. C. Chan

Publisher: John Wiley & Sons

Published: 2022-03-28

Total Pages: 500

ISBN-13: 1118535308

DOWNLOAD EBOOK

COMPUTATIONAL GEOMECHANICS The new edition of the first book to cover the computational dynamic aspects of geomechanics, now including more practical applications and up-to-date coverage of current research in the field Advances in computational geomechanics have dramatically improved understanding of the behavior of soils and the ability of engineers to design increasingly sophisticated constructions in the ground. When Professor Olek Zienkiewicz began the application of numerical approaches to solid dynamics at Swansea University, it became evident that realistic prediction of the behavior of soil masses could only be achieved if the total stress approaches were abandoned. Computational Geomechanics introduces the theory and application of Zienkiewicz’s computational approaches that remain the basis for work in the area of saturated and unsaturated soil to this day. Written by past students and colleagues of Professor Zienkiewicz, this extended Second Edition provides formulations for a broader range of problems, including failure load under static loading, saturated and unsaturated consolidation, hydraulic fracturing, and liquefaction of soil under earthquake loading. The internationally-recognized team of authors incorporates current computer technologies and new developments in the field, particularly in the area of partial saturation, as they guide readers on how to properly apply the formulation in their work. This one-of-a-kind volume: Explains the Biot-Zienkiewicz formulation for saturated and unsaturated soil Covers multiple applications to static and dynamic problems for saturated and unsaturated soil in areas such as earthquake engineering and fracturing of soils and rocks Features a completely new chapter on fast catastrophic landslides using depth integrated equations and smoothed particle hydrodynamics with applications Presents the theory of porous media in the saturated and unsaturated states to establish the foundation of the problem of soil mechanics Provides a quantitative description of soil behavior including simple plasticity models, generalized plasticity, and critical state soil mechanics Includes numerous questions, problems, hands-on experiments, applications to other situations, and example code for GeHoMadrid Computational Geomechanics: Theory and Applications, Second Edition is an ideal textbook for specialist and general geotechnical postgraduate courses, and a must-have reference for researchers in geomechanics and geotechnical engineering, for software developers and users of geotechnical finite element software, and for geotechnical analysts and engineers making use of the numerical results obtained from the Biot-Zienkiewicz formulation.


Continuum and Computational Mechanics for Geomechanical Engineers

Continuum and Computational Mechanics for Geomechanical Engineers

Author: Ömer Aydan

Publisher: CRC Press

Published: 2021-04-21

Total Pages: 356

ISBN-13: 1000367835

DOWNLOAD EBOOK

The field of rock mechanics and rock engineering utilizes the basic laws of continuum mechanics and the techniques developed in computational mechanics. This book describes the basic concepts behind these fundamental laws and their utilization in practice irrespective of whether rock/rock mass contains discontinuities. This book consists of nine chapters and six appendices. The first four chapters are concerned with continuum mechanics aspects, which include the basic operations, definition of stress and strain tensors, and derivation of four fundamental conservation laws in the simplest yet precise manner. The next two chapters are the preparation for computational mechanics, which require constitutive laws of geomaterials relevant to each conservation law and the procedures for how to determine required parameters of the constitutive laws. Computational mechanics solves the resulting ordinary and partial differential equations. In Chapter 7, the methods of exact (closed-form) solutions are explained and they are applied to ordinary/partial differential equations with solvable boundary and initial conditions. In Chapter 8, the fundamentals of approximate solution methods are explained for one dimension first and then how to extend them to multi-dimensional problems. The readers are expected to learn and clearly understand how they are derived and applied to various problems in geomechanics. The final chapter involves the applications of the approximate methods to the actual problems in practice for geomechanical engineers, which cover the continuum to discontinuum, including the stress state of the earth as well as the ground motions induced by earthquakes. Six appendices are provided to have a clear understanding of continuum mechanics operations and procedures for how to deal with discontinuities/interfaces often encountered in rock mechanics and rock engineering.


Advanced Mathematical and Computational Geomechanics

Advanced Mathematical and Computational Geomechanics

Author: Dimitrios Kolymbas

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 324

ISBN-13: 3540450793

DOWNLOAD EBOOK

Geomechanics is the mechanics of geomaterials, i.e. soils and rocks, and deals with fascinating problems such as settlements, stability of excavations, tunnels and offshore platforms, landslides, earthquakes and liquefaction. This edited book presents recent mathematical and computational tools and models to describe and simulate such problems in Geomechanics and Geotechnical Engineering. It includes a collection of contributions emanating from the three Euroconferences GeoMath ("Mathematical Methods in Geomechanics") that were held between 2000 and 2002 in Innsbruck/Austria and Horto/Greece.


Computational Geomechanics

Computational Geomechanics

Author: Arnold Verruijt

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 410

ISBN-13: 9401711127

DOWNLOAD EBOOK

Recent years have witnessed the development of computational geomechanics as an important branch of engineering. The use of modern computational techniques makes it possible to deal with many complex engineering problems, taking into account many of the typical properties of geotechnical materials (soil and rock), such as the coupled behaviour of pore water and solid material, nonlinear elasto-plastic behaviour, and transport processes. This book provides an introduction to these methods, presenting the basic principles of the geotechnical phenomena involved as well as the numerical models for their analysis, and including full listings of computer programs (in PASCAL). The types of geotechnical problems considered cover a wide range of applications, varying from classical problems such as slope stability, analysis of foundation piles and sheet pile walls to finite element analysis of groundwater flow, elasto-plastic deformations, consolidation and transport problems.


Modern Trends in Geomechanics

Modern Trends in Geomechanics

Author: Wei Wu

Publisher: Springer Science & Business Media

Published: 2006-11-22

Total Pages: 545

ISBN-13: 3540357246

DOWNLOAD EBOOK

This book is loaded with rich and stimulating articles by a roster of brilliant scholars, reflecting some recent trends in the frontier research of geomechanics. This collection of 32 contributions stems from an international workshop on "Modern Trends of Geomechanics" held in Vienna. The contributions span a wide range of topics and an enormous range of physical scales, from micromechanics at grain scale to engineering problems at large scale; from laboratory and field testing over constitutive modelling to numerical analysis. The key features of this book are: thermodynamics, multiphase continua and transport phenomena; constitutive modelling, localized bifurcation, micropolar theory, unsaturated soil, viscous and cyclic behaviour; numerical and analytical methods; discrete element method, micromechanics, grain crushing and damage; laboratory and field testing, foundation and mining engineering. This book will be rewarding for anyone interested in the frontier research in geomechanics and geotechnical engineering, appealing to graduate students, researchers and engineers alike.