Computational Methods in Protein Evolution

Computational Methods in Protein Evolution

Author: Tobias Sikosek

Publisher: Humana

Published: 2018-10-09

Total Pages: 0

ISBN-13: 9781493987351

DOWNLOAD EBOOK

This volume presents a diverse collection of methodologies used to study various problems at the protein sequence and structure level. The chapters in this book look at issues ranging from broad concepts like protein space to specifics like antibody modeling. Topics include point mutations, gene duplication, de novo emergence of new genes, pairwise correlated mutations, ancestral protein reconstruction, homology modelling, protein stability and dynamics, and protein-protein interactions. The book also covers a wide range of computational approaches, including sequence and structure alignments, phylogenies, physics-based and mathematical approaches, machine learning, and more. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and prerequisites, step-by-step, readily reproducible computational protocols (using command line or graphical user interfaces, sometimes including computer code), and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Computational Methods in Protein Evolution is a valuable resource that offers useful workflows and techniques that will help both novice and expert researchers working with proteins computationally.


Computational Methods for Protein Structure Prediction and Modeling

Computational Methods for Protein Structure Prediction and Modeling

Author: Ying Xu

Publisher: Springer Science & Business Media

Published: 2007-08-24

Total Pages: 408

ISBN-13: 0387683720

DOWNLOAD EBOOK

Volume One of this two-volume sequence focuses on the basic characterization of known protein structures, and structure prediction from protein sequence information. Eleven chapters survey of the field, covering key topics in modeling, force fields, classification, computational methods, and structure prediction. Each chapter is a self contained review covering definition of the problem and historical perspective; mathematical formulation; computational methods and algorithms; performance results; existing software; strengths, pitfalls, challenges, and future research.


Computational Methods for Protein Structure Prediction and Modeling

Computational Methods for Protein Structure Prediction and Modeling

Author: Ying Xu

Publisher: Springer Science & Business Media

Published: 2010-05-05

Total Pages: 335

ISBN-13: 0387688250

DOWNLOAD EBOOK

Volume Two of this two-volume sequence presents a comprehensive overview of protein structure prediction methods and includes protein threading, De novo methods, applications to membrane proteins and protein complexes, structure-based drug design, as well as structure prediction as a systems problem. A series of appendices review the biological and chemical basics related to protein structure, computer science for structural informatics, and prerequisite mathematics and statistics.


Sequence — Evolution — Function

Sequence — Evolution — Function

Author: Eugene V. Koonin

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 482

ISBN-13: 1475737831

DOWNLOAD EBOOK

Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.


Computational Molecular Evolution

Computational Molecular Evolution

Author: Ziheng Yang

Publisher: Oxford University Press, USA

Published: 2006-10-05

Total Pages: 374

ISBN-13: 0198566999

DOWNLOAD EBOOK

This book describes the models, methods and algorithms that are most useful for analysing the ever-increasing supply of molecular sequence data, with a view to furthering our understanding of the evolution of genes and genomes.


Practical Bioinformatics

Practical Bioinformatics

Author: Janusz M. Bujnicki

Publisher: Springer

Published: 2007-09-12

Total Pages: 275

ISBN-13: 3540742689

DOWNLOAD EBOOK

This book presents applications of bioinformatics tools that experimental research scientists use in "daily practice." Its interdisciplinary approach combines computational and experimental methods to solve scientific problems. The book begins with reviews of computational methods for protein sequence-structure-function analysis, followed by methods that use experimental data obtained in the laboratory to improve functional predictions.


Protein Engineering Protocols

Protein Engineering Protocols

Author: Kristian Müller

Publisher: Springer Science & Business Media

Published: 2007-10-26

Total Pages: 318

ISBN-13: 1597451878

DOWNLOAD EBOOK

Protein engineering is a fascinating mixture of molecular biology, protein structure analysis, computation, and biochemistry, with the goal of developing useful or valuable proteins. Protein Engineering Protocols will consider the two general, but not mutually exclusive, strategies for protein engineering. The first is known as rational design, in which the scientist uses detailed knowledge of the structure and function of the protein to make desired changes. The s- ond strategy is known as directed evolution. In this case, random mutagenesis is applied to a protein, and selection or screening is used to pick out variants that have the desired qualities. By several rounds of mutation and selection, this method mimics natural evolution. An additional technique known as DNA shuffling mixes and matches pieces of successful variants to produce better results. This process mimics recombination that occurs naturally during sexual reproduction. The first section of Protein Engineering Protocols describes rational p- tein design strategies, including computational methods, the use of non-natural amino acids to expand the biological alphabet, as well as impressive examples for the generation of proteins with novel characteristics. Although procedures for the introduction of mutations have become routine, predicting and und- standing the effects of these mutations can be very challenging and requires profound knowledge of the system as well as protein structures in general.


Computational Approaches to Protein Dynamics

Computational Approaches to Protein Dynamics

Author: Monika Fuxreiter

Publisher: CRC Press

Published: 2014-12-24

Total Pages: 458

ISBN-13: 1482297868

DOWNLOAD EBOOK

The Latest Developments on the Role of Dynamics in Protein FunctionsComputational Approaches to Protein Dynamics: From Quantum to Coarse-Grained Methods presents modern biomolecular computational techniques that address protein flexibility/dynamics at all levels of theory. An international contingent of leading researchers in chemistry, physics, an


Protein Engineering

Protein Engineering

Author: Huimin Zhao

Publisher: John Wiley & Sons

Published: 2021-08-23

Total Pages: 41

ISBN-13: 3527344705

DOWNLOAD EBOOK

A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.