Next-Generation Sequencing Data Analysis

Next-Generation Sequencing Data Analysis

Author: Xinkun Wang

Publisher: CRC Press

Published: 2016-04-06

Total Pages: 252

ISBN-13: 1482217899

DOWNLOAD EBOOK

A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi


Computational Methods for Next Generation Sequencing Data Analysis

Computational Methods for Next Generation Sequencing Data Analysis

Author: Ion Mandoiu

Publisher: John Wiley & Sons

Published: 2016-10-03

Total Pages: 460

ISBN-13: 1118169484

DOWNLOAD EBOOK

Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.


Biological Sequence Analysis

Biological Sequence Analysis

Author: Richard Durbin

Publisher: Cambridge University Press

Published: 1998-04-23

Total Pages: 372

ISBN-13: 113945739X

DOWNLOAD EBOOK

Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.


Algorithms for Next-Generation Sequencing Data

Algorithms for Next-Generation Sequencing Data

Author: Mourad Elloumi

Publisher: Springer

Published: 2017-09-18

Total Pages: 356

ISBN-13: 3319598260

DOWNLOAD EBOOK

The 14 contributed chapters in this book survey the most recent developments in high-performance algorithms for NGS data, offering fundamental insights and technical information specifically on indexing, compression and storage; error correction; alignment; and assembly. The book will be of value to researchers, practitioners and students engaged with bioinformatics, computer science, mathematics, statistics and life sciences.


Computational Exome and Genome Analysis

Computational Exome and Genome Analysis

Author: Peter N. Robinson

Publisher: CRC Press

Published: 2017-09-13

Total Pages: 575

ISBN-13: 1498775993

DOWNLOAD EBOOK

Exome and genome sequencing are revolutionizing medical research and diagnostics, but the computational analysis of the data has become an extremely heterogeneous and often challenging area of bioinformatics. Computational Exome and Genome Analysis provides a practical introduction to all of the major areas in the field, enabling readers to develop a comprehensive understanding of the sequencing process and the entire computational analysis pipeline.


Computational Methods for Next Generation Sequencing Data Analysis

Computational Methods for Next Generation Sequencing Data Analysis

Author: Ion Mandoiu

Publisher: John Wiley & Sons

Published: 2016-09-12

Total Pages: 462

ISBN-13: 1119272165

DOWNLOAD EBOOK

Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.


Computational Methods for Understanding Bacterial and Archaeal Genomes

Computational Methods for Understanding Bacterial and Archaeal Genomes

Author: Ying Xu

Publisher: World Scientific

Published: 2008

Total Pages: 494

ISBN-13: 1860949827

DOWNLOAD EBOOK

Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.


Computational Epigenetics and Diseases

Computational Epigenetics and Diseases

Author:

Publisher: Academic Press

Published: 2019-02-06

Total Pages: 452

ISBN-13: 0128145145

DOWNLOAD EBOOK

Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. - Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases - Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA - Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases


Computational Methods for Precision Oncology

Computational Methods for Precision Oncology

Author: Alessandro Laganà

Publisher: Springer Nature

Published: 2022-03-01

Total Pages: 341

ISBN-13: 303091836X

DOWNLOAD EBOOK

Precision medicine holds great promise for the treatment of cancer and represents a unique opportunity for accelerated development and application of novel and repurposed therapeutic approaches. Current studies and clinical trials demonstrate the benefits of genomic profiling for patients whose cancer is driven by specific, targetable alterations. However, precision oncologists continue to be challenged by the widespread heterogeneity of cancer genomes and drug responses in designing personalized treatments. Chapters provide a comprehensive overview of the computational approaches, methods, and tools that enable precision oncology, as well as related biological concepts. Covered topics include genome sequencing, the architecture of a precision oncology workflow, and introduces cutting-edge research topics in the field of precision oncology. This book is intended for computational biologists, bioinformaticians, biostatisticians and computational pathologists working in precision oncology and related fields, including cancer genomics, systems biology, and immuno-oncology.


Advances in Complex Data Modeling and Computational Methods in Statistics

Advances in Complex Data Modeling and Computational Methods in Statistics

Author: Anna Maria Paganoni

Publisher: Springer

Published: 2014-11-04

Total Pages: 210

ISBN-13: 3319111493

DOWNLOAD EBOOK

The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.