Comprises 11 contributions from a symposium sponsored by the Applied Mechanics Division of the Committee on Computing in Applied Mechanics and the Technical Publishing Department of ASME. Representative paper topics include the optimal shape design of three dimensional MEMs with applications to elecrostatic comb drives; identification of the friction coefficient for steady and unsteady shallow-water flows; experimental spatial matrix identification as a practical inverse problem in mechanics; identification problems for vibrating composite plates; and linear buckle analysis for partially buckled webs. No subject index. Annotation copyrighted by Book News, Inc., Portland, OR
The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.
This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results. The techniques are applied to a number of real world applications such as limited angle tomography, image deblurring, electical impedance tomography, and biomagnetic inverse problems. Contains detailed examples throughout and includes a chapter on case studies where such methods have been implemented in biomedical engineering.
Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.
Nowadays inverse problems and applications in science and engineering represent an extremely active research field. The subjects are related to mathematics, physics, geophysics, geochemistry, oceanography, geography and remote sensing, astronomy, biomedicine, and other areas of applications. This monograph reports recent advances of inversion theory and recent developments with practical applications in frontiers of sciences, especially inverse design and novel computational methods for inverse problems. The practical applications include inverse scattering, chemistry, molecular spectra data processing, quantitative remote sensing inversion, seismic imaging, oceanography, and astronomical imaging. The book serves as a reference book and readers who do research in applied mathematics, engineering, geophysics, biomedicine, image processing, remote sensing, and environmental science will benefit from the contents since the book incorporates a background of using statistical and non-statistical methods, e.g., regularization and optimization techniques for solving practical inverse problems.
The First International Conference on Computational Methods (ICCM04), organized by the department of Mechanical Engineering, National University of Singapore, was held in Singapore, December 15-17, 2004, with great success. This conference proceedings contains some 290 papers from more than 30 countries/regions. The papers cover a broad range of topics such as meshfree particle methods, Generalized FE and Extended FE methods, inverse analysis and optimization methods. Computational methods for geomechanics, machine learning, vibration, shock, impact, health monitoring, material modeling, fracture and damage mechanics, multi-physics and multi-scales simulation, sports and environments are also included. All the papers are pre-reviewed before they are accepted for publication in this proceedings. The proceedings will provide an informative, timely and invaluable resource for engineers and scientists working in the important areas of computational methods.
This book is a compilation of different methods of formulating and solving inverse problems in physics from classical mechanics to the potentials and nucleus-nucleus scattering. Mathematical proofs are omitted since excellent monographs already exist dealing with these aspects of the inverse problems.The emphasis here is on finding numerical solutions to complicated equations. A detailed discussion is presented on the use of continued fractional expansion, its power and its limitation as applied to various physical problems. In particular, the inverse problem for discrete form of the wave equation is given a detailed exposition and applied to atomic and nuclear scattering, in the latter for elastic as well as inelastic collision. This technique is also used for inverse problem of geomagnetic induction and one-dimensional electrical conductivity. Among other topics covered are the inverse problem of torsional vibration, and also a chapter on the determination of the motion of a body with reflecting surface from its reflection coefficient.
There is an increasing need for undergraduate students in physics to have a core set of computational tools. Most problems in physics benefit from numerical methods, and many of them resist analytical solution altogether. This textbook presents numerical techniques for solving familiar physical problems where a complete solution is inaccessible using traditional mathematical methods. The numerical techniques for solving the problems are clearly laid out, with a focus on the logic and applicability of the method. The same problems are revisited multiple times using different numerical techniques, so readers can easily compare the methods. The book features over 250 end-of-chapter exercises. A website hosted by the author features a complete set of programs used to generate the examples and figures, which can be used as a starting point for further investigation. A link to this can be found at www.cambridge.org/9781107034303.