High-Order Methods for Computational Physics

High-Order Methods for Computational Physics

Author: Timothy J. Barth

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 594

ISBN-13: 366203882X

DOWNLOAD EBOOK

The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.


Computational Structural Mechanics & Fluid Dynamics

Computational Structural Mechanics & Fluid Dynamics

Author: A.K. Noor

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 467

ISBN-13: 1483287041

DOWNLOAD EBOOK

Computational structural mechanics (CSM) and computational fluid dynamics (CFD) have emerged in the last two decades as new disciplines combining structural mechanics and fluid dynamics with approximation theory, numerical analysis and computer science. Their use has transformed much of theoretical mechanics and abstract science into practical and essential tools for a multitude of technological developments which affect many facets of our life. This collection of over 40 papers provides an authoritative documentation of major advances in both CSM and CFD, helping to identify future directions of development in these rapidly changing fields. Key areas covered are fluid structure interaction and aeroelasticity, CFD technology and reacting flows, micromechanics, stability and eigenproblems, probabilistic methods and chaotic dynamics, perturbation and spectral methods, element technology (finite volume, finite elements and boundary elements), adaptive methods, parallel processing machines and applications, and visualization, mesh generation and artificial intelligence interfaces.


Numerical and Computer Methods in Structural Mechanics

Numerical and Computer Methods in Structural Mechanics

Author: Steven J. Fenves

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 698

ISBN-13: 1483272540

DOWNLOAD EBOOK

Numerical and Computer Methods in Structural Mechanics is a compendium of papers that deals with the numerical methods in structural mechanics, computer techniques, and computer capabilities. Some papers discus the analytical basis of the computer technique most widely used in software, that is, the finite element method. This method includes the convergence (in terms of variation principles) isoparametrics, hybrid models, and incompatible displacement models. Other papers explain the storage or retrieval of data, as well as equation-solving algorithms. Other papers describe general-purpose structural mechanics programs, alternatives to, and extension of the usual finite element approaches. Another paper explores nonlinear, dynamic finite element problems, and a direct physical approach to determine finite difference models. Special papers explain structural mechanics used in computing, particularly, those related to integrated data bases, such as in the Structures Oriented Exchange System of the Office of Naval Research and the integrated design of tanker structures. Other papers describe software and hardware capabilities, for example, in ship design, fracture mechanics, biomechanics, and crash safety. The text is suitable for programmers, computer engineers, researchers, and scientists involved in materials and industrial design.