This book constitutes the refereed proceedings of the Second International Symposium on Computational Life Sciences, CompLife 2006, held in Cambridge, UK, in September 2006.The 25 revised full papers presented were carefully reviewed and selected from 56 initial submissions. The papers are organized in topical sections on genomics, data mining, molecular simulation, molecular informatics, systems biology, biological networks/metabolism, and computational neuroscience.
The First Book to Describe the Technical and Practical Elements of Chemical Text MiningExplores the development of chemical structure extraction capabilities and how to incorporate these technologies in daily research workFor scientific researchers, finding too much information on a subject, not finding enough information, or not being able&nb
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.
Written for drug developers rather than computer scientists, this monograph adopts a systematic approach to mining scientifi c data sources, covering all key steps in rational drug discovery, from compound screening to lead compound selection and personalized medicine. Clearly divided into four sections, the first part discusses the different data sources available, both commercial and non-commercial, while the next section looks at the role and value of data mining in drug discovery. The third part compares the most common applications and strategies for polypharmacology, where data mining can substantially enhance the research effort. The final section of the book is devoted to systems biology approaches for compound testing. Throughout the book, industrial and academic drug discovery strategies are addressed, with contributors coming from both areas, enabling an informed decision on when and which data mining tools to use for one's own drug discovery project.
Leading experts illustrate how sophisticated computational data mining techniques can impact contemporary drug discovery and development In the era of post-genomic drug development, extracting and applying knowledge from chemical, biological, and clinical data is one of the greatest challenges facing the pharmaceutical industry. Pharmaceutical Data Mining brings together contributions from leading academic and industrial scientists, who address both the implementation of new data mining technologies and application issues in the industry. This accessible, comprehensive collection discusses important theoretical and practical aspects of pharmaceutical data mining, focusing on diverse approaches for drug discovery—including chemogenomics, toxicogenomics, and individual drug response prediction. The five main sections of this volume cover: A general overview of the discipline, from its foundations to contemporary industrial applications Chemoinformatics-based applications Bioinformatics-based applications Data mining methods in clinical development Data mining algorithms, technologies, and software tools, with emphasis on advanced algorithms and software that are currently used in the industry or represent promising approaches In one concentrated reference, Pharmaceutical Data Mining reveals the role and possibilities of these sophisticated techniques in contemporary drug discovery and development. It is ideal for graduate-level courses covering pharmaceutical science, computational chemistry, and bioinformatics. In addition, it provides insight to pharmaceutical scientists, principal investigators, principal scientists, research directors, and all scientists working in the field of drug discovery and development and associated industries.
This book constitutes the refereed proceedings of the Third International Symposium on Bioinformatics Research and Applications, ISBRA 2007, held in Atlanta, GA, USA in May 2007. The 55 revised full papers presented together with three invited talks cover a wide range of topics, including clustering and classification, gene expression analysis, gene networks, genome analysis, motif finding, pathways, protein structure prediction, protein domain interactions, phylogenetics, and software tools.
“Patenting Nanomedicines: Legal Aspects, Intellectual Property and Grant Opportunities” focusses on the fundamental aspects of Patenting Nanomedicines applied in different “Drug Delivery and Targeting Systems”. The promoters of new findings in this field of research are numerous and spread worldwide; therefore, managing intellectual property portfolios, and the acquisition and exploitation of new knowledge face several contingency factors. Today, the scientific community is discussing issues of economic outcomes in the field of Nanomedicines. Major concerns include questions as to whether the research groups, academics, industry and other stakeholders should work in unison or independently, if innovation or adaptation of new technology should be prioritized, public versus private research funding, and safeguarding versus sharing knowledge. However, despite its increasing importance for humankind, it is a matter of concern as to whether technological development can really be stimulated by patent protection. An intellectual property strategy should aim to develop a qualitative patent portfolio for continuous learning. This book addresses questions of ethics, socio-political policies and regulatory aspects of novel Nanomedicine-based products which are currently under development for the diagnosis and treatment of different types of diseases. It is divided in two parts – Part I is composed of the first 3 chapters, which focus on the “fundamentals” of legal aspects, emerging threats, advantages and disadvantages of patenting Nanomedicines, whereas Part II collects 12 chapters discussing different types of Nanomedicine-based products, their potential marketing aspects and patent protection. Whenever applied, each chapter offers a list of patents, based on a specific application in drug delivery and targeting. An outstanding team of 53 authors have contributed to this book, which will be of interest to professionals from the field of patent examiners, academics, researchers and scientists, students and other practitioners.
The Advances in Protein Chemistry and Structural Biology series is an essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins, with each thematically organized volume guest edited by leading experts in a broad range of protein-related topics. - Provides cutting-edge developments in protein chemistry and structural biology - Chapters are written by authorities in their field - Targeted to a wide audience of researchers, specialists, and students
Explore all the tools and templates needed for data scientists to drive success in their biotechnology careers with this comprehensive guide Key FeaturesLearn the applications of machine learning in biotechnology and life science sectorsDiscover exciting real-world applications of deep learning and natural language processingUnderstand the general process of deploying models to cloud platforms such as AWS and GCPBook Description The booming fields of biotechnology and life sciences have seen drastic changes over the last few years. With competition growing in every corner, companies around the globe are looking to data-driven methods such as machine learning to optimize processes and reduce costs. This book helps lab scientists, engineers, and managers to develop a data scientist's mindset by taking a hands-on approach to learning about the applications of machine learning to increase productivity and efficiency in no time. You'll start with a crash course in Python, SQL, and data science to develop and tune sophisticated models from scratch to automate processes and make predictions in the biotechnology and life sciences domain. As you advance, the book covers a number of advanced techniques in machine learning, deep learning, and natural language processing using real-world data. By the end of this machine learning book, you'll be able to build and deploy your own machine learning models to automate processes and make predictions using AWS and GCP. What you will learnGet started with Python programming and Structured Query Language (SQL)Develop a machine learning predictive model from scratch using PythonFine-tune deep learning models to optimize their performance for various tasksFind out how to deploy, evaluate, and monitor a model in the cloudUnderstand how to apply advanced techniques to real-world dataDiscover how to use key deep learning methods such as LSTMs and transformersWho this book is for This book is for data scientists and scientific professionals looking to transcend to the biotechnology domain. Scientific professionals who are already established within the pharmaceutical and biotechnology sectors will find this book useful. A basic understanding of Python programming and beginner-level background in data science conjunction is needed to get the most out of this book.