Computational Intelligence and Machine Learning

Computational Intelligence and Machine Learning

Author: Jyotsna Kumar Mandal

Publisher: Springer Nature

Published: 2020-11-24

Total Pages: 201

ISBN-13: 9811586101

DOWNLOAD EBOOK

This book focuses on both theory and applications in the broad areas of computational intelligence and machine learning. The proceedings of the Seventh International Conference on Advanced Computing, Networking, and Informatics (ICACNI 2019) present research papers in the areas of advanced computing, networking, and informatics. It brings together contributions from scientists, professors, scholars, and students and presents essential information on the topic. It also discusses the practical challenges encountered and the solutions used to overcome them, the goal being to promote the “translation” of basic research into applied research and of applied research into practice. The works presented here also demonstrate the importance of basic scientific research in a range of fields.


Computational Intelligence for Machine Learning and Healthcare Informatics

Computational Intelligence for Machine Learning and Healthcare Informatics

Author: Rajshree Srivastava

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-06-22

Total Pages: 346

ISBN-13: 3110648199

DOWNLOAD EBOOK

This book presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It is intended to provide a unique compendium of current and emerging machine learning paradigms for healthcare informatics, reflecting the diversity, complexity, and depth and breadth of this multi-disciplinary area.


Advances in Machine Learning and Computational Intelligence

Advances in Machine Learning and Computational Intelligence

Author: Srikanta Patnaik

Publisher: Springer Nature

Published: 2020-07-25

Total Pages: 853

ISBN-13: 9811552436

DOWNLOAD EBOOK

This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.


Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication

Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication

Author: E. S. Gopi

Publisher: Springer Nature

Published: 2021-05-28

Total Pages: 643

ISBN-13: 9811602891

DOWNLOAD EBOOK

This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, power control, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalization, super-resolution channel and direction-of-arrival estimation. The book is a rich reference material for academia and industry.


Artificial Intelligence and Deep Learning in Pathology

Artificial Intelligence and Deep Learning in Pathology

Author: Stanley Cohen

Publisher: Elsevier Health Sciences

Published: 2020-06-02

Total Pages: 290

ISBN-13: 0323675379

DOWNLOAD EBOOK

Recent advances in computational algorithms, along with the advent of whole slide imaging as a platform for embedding artificial intelligence (AI), are transforming pattern recognition and image interpretation for diagnosis and prognosis. Yet most pathologists have just a passing knowledge of data mining, machine learning, and AI, and little exposure to the vast potential of these powerful new tools for medicine in general and pathology in particular. In Artificial Intelligence and Deep Learning in Pathology, Dr. Stanley Cohen covers the nuts and bolts of all aspects of machine learning, up to and including AI, bringing familiarity and understanding to pathologists at all levels of experience. - Focuses heavily on applications in medicine, especially pathology, making unfamiliar material accessible and avoiding complex mathematics whenever possible. - Covers digital pathology as a platform for primary diagnosis and augmentation via deep learning, whole slide imaging for 2D and 3D analysis, and general principles of image analysis and deep learning. - Discusses and explains recent accomplishments such as algorithms used to diagnose skin cancer from photographs, AI-based platforms developed to identify lesions of the retina, using computer vision to interpret electrocardiograms, identifying mitoses in cancer using learning algorithms vs. signal processing algorithms, and many more.


Artificial Intelligence and Machine Learning for Business for Non-Engineers

Artificial Intelligence and Machine Learning for Business for Non-Engineers

Author: Stephan S. Jones

Publisher: CRC Press

Published: 2019-11-22

Total Pages: 165

ISBN-13: 1000733653

DOWNLOAD EBOOK

The next big area within the information and communication technology field is Artificial Intelligence (AI). The industry is moving to automate networks, cloud-based systems (e.g., Salesforce), databases (e.g., Oracle), AWS machine learning (e.g., Amazon Lex), and creating infrastructure that has the ability to adapt in real-time to changes and learn what to anticipate in the future. It is an area of technology that is coming faster and penetrating more areas of business than any other in our history. AI will be used from the C-suite to the distribution warehouse floor. Replete with case studies, this book provides a working knowledge of AI’s current and future capabilities and the impact it will have on every business. It covers everything from healthcare to warehousing, banking, finance and education. It is essential reading for anyone involved in industry.


Machine Learning and Artificial Intelligence

Machine Learning and Artificial Intelligence

Author: Ameet V Joshi

Publisher: Springer Nature

Published: 2019-09-24

Total Pages: 262

ISBN-13: 3030266222

DOWNLOAD EBOOK

This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals. It makes minimal use of mathematics to make the topics more intuitive and accessible. Presents a full reference to artificial intelligence and machine learning techniques - in theory and application; Provides a guide to AI and ML with minimal use of mathematics to make the topics more intuitive and accessible; Connects all ML and AI techniques to applications and introduces implementations.


Computational Sciences and Artificial Intelligence in Industry

Computational Sciences and Artificial Intelligence in Industry

Author: Tero Tuovinen

Publisher: Springer Nature

Published: 2021-08-19

Total Pages: 278

ISBN-13: 3030707873

DOWNLOAD EBOOK

This book is addressed to young researchers and engineers in the fields of Computational Science and Artificial Intelligence, ranging from innovative computational methods to digital machine learning tools and their coupling used for solving challenging industrial and societal problems.This book provides the latest knowledge from jointly academic and industries experts in Computational Science and Artificial Intelligence fields for exploring possibilities and identifying challenges of applying Computational Sciences and AI methods and tools in industrial and societal sectors.


Computational Intelligence in Recent Communication Networks

Computational Intelligence in Recent Communication Networks

Author: Mariya Ouaissa

Publisher: Springer Nature

Published: 2022-02-21

Total Pages: 279

ISBN-13: 3030771857

DOWNLOAD EBOOK

This book focuses on the use of Artificial Intelligence and Machine Learning (AI/ML) based techniques to solve issues related to communication networks, their layers, as well as their applications. The book first offers an introduction to recent trends regarding communication networks. The authors then provide an overview of theoretical concepts of AI/ML, techniques and protocols used in different layers of communication. Furthermore, this book presents solutions that help analyze complex patterns in user data and ultimately improve productivity. Throughout, AI/ML-based solutions are provided, for topics such as signal detection, channel modeling, resource optimization, routing protocol design, transport layer optimization, user/application behavior prediction, software-defined networking, congestion control, communication network optimization, security, and anomaly detection. The book features chapters from a large spectrum of authors including researchers, students, as well as industrials involved in research and development.


Illustrated Computational Intelligence

Illustrated Computational Intelligence

Author: Priti Srinivas Sajja

Publisher: Springer

Published: 2021-11-17

Total Pages: 225

ISBN-13: 9789811595912

DOWNLOAD EBOOK

This book presents a summary of artificial intelligence and machine learning techniques in its first two chapters. The remaining chapters of the book provide everything one must know about the basic artificial intelligence to modern machine intelligence techniques including the hybrid computational intelligence technique, using the concepts of several real-life solved examples, design of projects and research ideas. The solved examples with more than 200 illustrations presented in the book are a great help to instructors, students, non–AI professionals, and researchers. Each example is discussed in detail with encoding, normalization, architecture, detailed design, process flow, and sample input/output. Summary of the fundamental concepts with solved examples is a unique combination and highlight of this book.