The book is a collection of high-quality peer-reviewed research papers presented in the Second International Conference on Computational Intelligence in Data Mining (ICCIDM 2015) held at Bhubaneswar, Odisha, India during 5 – 6 December 2015. The two-volume Proceedings address the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
The book aims to merge Computational Intelligence with Data Mining, which are both hot topics of current research and industrial development, Computational Intelligence, incorporates techniques like data fusion, uncertain reasoning, heuristic search, learning, and soft computing. Data Mining focuses on unscrambling unknown patterns or structures in very large data sets. Under the headline "Discovering Structures in Large Databases” the book starts with a unified view on ‘Data Mining and Statistics – A System Point of View’. Two special techniques follow: ‘Subgroup Mining’, and ‘Data Mining with Possibilistic Graphical Models’. "Data Fusion and Possibilistic or Fuzzy Data Analysis” is the next area of interest. An overview of possibilistic logic, nonmonotonic reasoning and data fusion is given, the coherence problem between data and non-linear fuzzy models is tackled, and outlier detection based on learning of fuzzy models is studied. In the domain of "Classification and Decomposition” adaptive clustering and visualisation of high dimensional data sets is introduced. Finally, in the section "Learning and Data Fusion” learning of special multi-agents of virtual soccer is considered. The last topic is on data fusion based on stochastic models.
The contributed volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science, i.e., computational intelligence and data mining. Data Mining aims at the automatic discovery of underlying non-trivial knowledge from datasets by applying intelligent analysis techniques. The interest in this research area has experienced a considerable growth in the last years due to two key factors: (a) knowledge hidden in organizations’ databases can be exploited to improve strategic and managerial decision-making; (b) the large volume of data managed by organizations makes it impossible to carry out a manual analysis. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
The book is a collection of high-quality peer-reviewed research papers presented in the Second International Conference on Computational Intelligence in Data Mining (ICCIDM 2015) held at Bhubaneswar, Odisha, India during 5 – 6 December 2015. The two-volume Proceedings address the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
This proceeding discuss the latest solutions, scientific findings and methods for solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. This gathers outstanding papers from the fifth International Conference on “Computational Intelligence in Data Mining” (ICCIDM), and offer a “sneak preview” of the strengths and weaknesses of trending applications, together with exciting advances in computational intelligence, data mining, and related fields.
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
This volume examines the application of swarm intelligence in data mining, addressing the issues of swarm intelligence and data mining using novel intelligent approaches. The book comprises 11 chapters including an introduction reviewing fundamental definitions and important research challenges. Important features include a detailed overview of swarm intelligence and data mining paradigms, focused coverage of timely, advanced data mining topics, state-of-the-art theoretical research and application developments and contributions by pioneers in the field.
The contributed volume aims to explicate and address the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. Data Mining aims at the automatic discovery of underlying non-trivial knowledge from datasets by applying intelligent analysis techniques. The interest in this research area has experienced a considerable growth in the last years due to two key factors: (a) knowledge hidden in organizations’ databases can be exploited to improve strategic and managerial decision-making; (b) the large volume of data managed by organizations makes it impossible to carry out a manual analysis. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
The book presents high quality papers presented at the International Conference on Computational Intelligence in Data Mining (ICCIDM 2016) organized by School of Computer Engineering, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India during December 10 – 11, 2016. The book disseminates the knowledge about innovative, active research directions in the field of data mining, machine and computational intelligence, along with current issues and applications of related topics. The volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science.
Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms. - Covers crop protection, automation in agriculture, artificial intelligence in agriculture, sensing and Internet of Things (IoTs) in agriculture - Addresses AI use in weed management, disease detection, yield prediction and crop production - Utilizes case studies to provide real-world insights and direction