Computational Dynamics

Computational Dynamics

Author: Ahmed A. Shabana

Publisher: John Wiley & Sons

Published: 2001-06-25

Total Pages: 521

ISBN-13: 0471053260

DOWNLOAD EBOOK

A practical approach to the computational methods used to solve real-world dynamics problems Computational dynamics has grown rapidly in recent years with the advent of high-speed digital computers and the need to develop simulation and analysis computational capabilities for mechanical and aerospace systems that consist of interconnected bodies. Computational Dynamics, Second Edition offers a full introduction to the concepts, definitions, and techniques used in multibody dynamics and presents essential topics concerning kinematics and dynamics of motion in two and three dimensions. Skillfully organized into eight chapters that mirror the standard learning sequence of computational dynamics courses, this Second Edition begins with a discussion of classical techniques that review some of the fundamental concepts and formulations in the general field of dynamics. Next, it builds on these concepts in order to demonstrate the use of the methods as the foundation for the study of computational dynamics. Finally, the book presents different computational methodologies used in the computer-aided analysis of mechanical and aerospace systems. Each chapter features simple examples that show the main ideas and procedures, as well as straightforward problem sets that facilitate learning and help readers build problem-solving skills. Clearly written and ready to apply, Computational Dynamics, Second Edition is a valuable reference for both aspiring and practicing mechanical and aerospace engineers.


Computational Fluid Dynamics with Moving Boundaries

Computational Fluid Dynamics with Moving Boundaries

Author: Wei Shyy

Publisher: Courier Corporation

Published: 2012-08-21

Total Pages: 306

ISBN-13: 0486135551

DOWNLOAD EBOOK

This text describes several computational techniques that can be applied to a variety of problems in thermo-fluid physics, multi-phase flow, and applied mechanics involving moving flow boundaries. Step-by-step discussions of numerical procedures include multiple examples that employ algorithms in problem-solving. In addition to its survey of contemporary numerical techniques, this volume discusses formulation and computation strategies as well as applications in many fields. Researchers and professionals in aerospace, chemical, mechanical, and materials engineering will find it a valuable resource. It is also an appropriate textbook for advanced courses in fluid dynamics, computation fluid dynamics, heat transfer, and numerical methods.


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiri Blazek

Publisher: Elsevier

Published: 2005-12-20

Total Pages: 491

ISBN-13: 0080529674

DOWNLOAD EBOOK

Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.


Essentials of Computational Fluid Dynamics

Essentials of Computational Fluid Dynamics

Author: Jens-Dominik Mueller

Publisher: CRC Press

Published: 2015-11-04

Total Pages: 236

ISBN-13: 1482227312

DOWNLOAD EBOOK

Covered from the vantage point of a user of a commercial flow package, Essentials of Computational Fluid Dynamics provides the information needed to competently operate a commercial flow solver. This book provides a physical description of fluid flow, outlines the strengths and weaknesses of computational fluid dynamics (CFD), presents the basics o


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: T. J. Chung

Publisher: Cambridge University Press

Published: 2010-09-27

Total Pages:

ISBN-13: 1139493299

DOWNLOAD EBOOK

The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.


Computational Structural Dynamics and Earthquake Engineering

Computational Structural Dynamics and Earthquake Engineering

Author: Manolis Papadrakakis

Publisher: CRC Press

Published: 2008-12-04

Total Pages: 672

ISBN-13: 020388163X

DOWNLOAD EBOOK

The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam


Computational Fluid Dynamics

Computational Fluid Dynamics

Author: Jiyuan Tu

Publisher: Butterworth-Heinemann

Published: 2012-11-07

Total Pages: 458

ISBN-13: 0080982433

DOWNLOAD EBOOK

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .


Using Computational Fluid Dynamics

Using Computational Fluid Dynamics

Author: Christopher Thomas Shaw

Publisher:

Published: 1992

Total Pages: 280

ISBN-13:

DOWNLOAD EBOOK

Provides a detailed explanation of the process of producing computer solutions to industrial flow problems, illustrating widely-used CFD modelling techniques to the non-specialized user. Detailed case-studies and worked examples are provided.


Computational Wave Dynamics

Computational Wave Dynamics

Author: Hitoshi Gotoh

Publisher: World Scientific Publishing Company

Published: 2013-06-04

Total Pages: 251

ISBN-13: 9814449725

DOWNLOAD EBOOK

This book provides a comprehensive description of the latest theory-supported numerical technologies, as well as scientific and engineering applications for water surface waves. Its contents are crafted to cater to a step-by-step learning of computational wave dynamics and ocean wave modeling. It provides a comprehensive description from underlying theories of free-surface flows, to practical computational applications for coastal and ocean engineering on the basis of computational fluid dynamics (CFD).The text may be used as a textbook for advanced undergraduate students and graduate students to understand the theoretical background of wave computations, and the recent progress of computational techniques for free-surface and interfacial flows, such as Volume of Fluid (VOF), Constrained Interpolation Profile (CIP), Lagrangian Particle (SPH, MPS), Distinct Element (DEM) and Euler-Lagrange Hybrid Methods.It is also suitable for researchers and engineers who wish to apply CFD techniques to ocean modeling and practical coastal problems involving sediment transport, wave-structure interaction and surf zone flows.