Computational and Combinatorial Group Theory and Cryptography

Computational and Combinatorial Group Theory and Cryptography

Author: Benjamin Fine

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 210

ISBN-13: 0821875639

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Session on Computational Algebra, Groups, and Applications, held April 30-May 1, 2011, at the University of Nevada, Las Vegas, Nevada, and the AMS Special Session on the Mathematical Aspects of Cryptography and Cyber Security, held September 10-11, 2011, at Cornell University, Ithaca, New York. Over the past twenty years combinatorial and infinite group theory has been energized by three developments: the emergence of geometric and asymptotic group theory, the development of algebraic geometry over groups leading to the solution of the Tarski problems, and the development of group-based cryptography. These three areas in turn have had an impact on computational algebra and complexity theory. The papers in this volume, both survey and research, exhibit the tremendous vitality that is at the heart of group theory in the beginning of the twenty-first century as well as the diversity of interests in the field.


Group-based Cryptography

Group-based Cryptography

Author: Alexei Myasnikov

Publisher: Springer Science & Business Media

Published: 2008-07-17

Total Pages: 192

ISBN-13: 3764388269

DOWNLOAD EBOOK

This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It is explored how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public key cryptography. It is also shown that there is a remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant properties of some infinite groups that have been applied in public key cryptography so far. Its elementary exposition makes the book accessible to graduate as well as undergraduate students in mathematics or computer science.


Public-Key Cryptography and Computational Number Theory

Public-Key Cryptography and Computational Number Theory

Author: Kazimierz Alster

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 345

ISBN-13: 3110881039

DOWNLOAD EBOOK

The Proceedings contain twenty selected, refereed contributions arising from the International Conference on Public-Key Cryptography and Computational Number Theory held in Warsaw, Poland, on September 11-15, 2000. The conference, attended by eightyfive mathematicians from eleven countries, was organized by the Stefan Banach International Mathematical Center. This volume contains articles from leading experts in the world on cryptography and computational number theory, providing an account of the state of research in a wide variety of topics related to the conference theme. It is dedicated to the memory of the Polish mathematicians Marian Rejewski (1905-1980), Jerzy Róøycki (1909-1942) and Henryk Zygalski (1907-1978), who deciphered the military version of the famous Enigma in December 1932 January 1933. A noteworthy feature of the volume is a foreword written by Andrew Odlyzko on the progress in cryptography from Enigma time until now.


Group Theoretic Cryptography

Group Theoretic Cryptography

Author: Maria Isabel Gonzalez Vasco

Publisher: CRC Press

Published: 2015-04-01

Total Pages: 244

ISBN-13: 1584888377

DOWNLOAD EBOOK

Group theory appears to be a promising source of hard computational problems for deploying new cryptographic constructions. This reference focuses on the specifics of using groups, including in particular non-Abelian groups, in the field of cryptography. It provides an introduction to cryptography with emphasis on the group theoretic perspective, making it one of the first books to use this approach. The authors provide the needed cryptographic and group theoretic concepts, full proofs of essential theorems, and formal security evaluations of the cryptographic schemes presented. They also provide references for further reading and exercises at the end of each chapter.


Interactions between Group Theory, Symmetry and Cryptology

Interactions between Group Theory, Symmetry and Cryptology

Author: María Isabel González Vasco

Publisher: MDPI

Published: 2020-04-22

Total Pages: 164

ISBN-13: 3039288024

DOWNLOAD EBOOK

Cryptography lies at the heart of most technologies deployed today for secure communications. At the same time, mathematics lies at the heart of cryptography, as cryptographic constructions are based on algebraic scenarios ruled by group or number theoretical laws. Understanding the involved algebraic structures is, thus, essential to design robust cryptographic schemes. This Special Issue is concerned with the interplay between group theory, symmetry and cryptography. The book highlights four exciting areas of research in which these fields intertwine: post-quantum cryptography, coding theory, computational group theory and symmetric cryptography. The articles presented demonstrate the relevance of rigorously analyzing the computational hardness of the mathematical problems used as a base for cryptographic constructions. For instance, decoding problems related to algebraic codes and rewriting problems in non-abelian groups are explored with cryptographic applications in mind. New results on the algebraic properties or symmetric cryptographic tools are also presented, moving ahead in the understanding of their security properties. In addition, post-quantum constructions for digital signatures and key exchange are explored in this Special Issue, exemplifying how (and how not) group theory may be used for developing robust cryptographic tools to withstand quantum attacks.


Cryptology and Computational Number Theory

Cryptology and Computational Number Theory

Author: Carl Pomerance

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 188

ISBN-13: 9780821801550

DOWNLOAD EBOOK

In the past dozen or so years, cryptology and computational number theory have become increasingly intertwined. Because the primary cryptologic application of number theory is the apparent intractability of certain computations, these two fields could part in the future and again go their separate ways. But for now, their union is continuing to bring ferment and rapid change in both subjects. This book contains the proceedings of an AMS Short Course in Cryptology and Computational Number Theory, held in August 1989 during the Joint Mathematics Meetings in Boulder, Colorado. These eight papers by six of the top experts in the field will provide readers with a thorough introduction to some of the principal advances in cryptology and computational number theory over the past fifteen years. In addition to an extensive introductory article, the book contains articles on primality testing, discrete logarithms, integer factoring, knapsack cryptosystems, pseudorandom number generators, the theoretical underpinnings of cryptology, and other number theory-based cryptosystems. Requiring only background in elementary number theory, this book is aimed at nonexperts, including graduate students and advanced undergraduates in mathematics and computer science.


Algebraic Aspects of Cryptography

Algebraic Aspects of Cryptography

Author: Neal Koblitz

Publisher: Springer Science & Business Media

Published: 2004-05-07

Total Pages: 220

ISBN-13: 9783540634461

DOWNLOAD EBOOK

From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making it appropriate for a course in mathematics or computer science. [...] Overall, this is an excellent expository text, and will be very useful to both the student and researcher." Mathematical Reviews


Cryptanalysis of Number Theoretic Ciphers

Cryptanalysis of Number Theoretic Ciphers

Author: Samuel S. Wagstaff, Jr.

Publisher: CRC Press

Published: 2019-08-22

Total Pages: 340

ISBN-13: 1351991949

DOWNLOAD EBOOK

At the heart of modern cryptographic algorithms lies computational number theory. Whether you're encrypting or decrypting ciphers, a solid background in number theory is essential for success. Written by a number theorist and practicing cryptographer, Cryptanalysis of Number Theoretic Ciphers takes you from basic number theory to the inner workings of ciphers and protocols. First, the book provides the mathematical background needed in cryptography as well as definitions and simple examples from cryptography. It includes summaries of elementary number theory and group theory, as well as common methods of finding or constructing large random primes, factoring large integers, and computing discrete logarithms. Next, it describes a selection of cryptographic algorithms, most of which use number theory. Finally, the book presents methods of attack on the cryptographic algorithms and assesses their effectiveness. For each attack method the author lists the systems it applies to and tells how they may be broken with it. Computational number theorists are some of the most successful cryptanalysts against public key systems. Cryptanalysis of Number Theoretic Ciphers builds a solid foundation in number theory and shows you how to apply it not only when breaking ciphers, but also when designing ones that are difficult to break.


Non-commutative Cryptography and Complexity of Group-theoretic Problems

Non-commutative Cryptography and Complexity of Group-theoretic Problems

Author: Sandy Weedman

Publisher: Createspace Independent Publishing Platform

Published: 2014-10-30

Total Pages: 402

ISBN-13: 9781974040322

DOWNLOAD EBOOK

This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It explores how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public-key cryptography. It also shows that there is remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. In particular, a lot of emphasis in the book is put on studying search problems, as compared to decision problems traditionally studied in combinatorial group theory.