Despite a plethora of scientific literature devoted to vision research and the trend toward integrative research, the borders between disciplines remain a practical difficulty. To address this problem, this book provides a systematic and comprehensive overview of vision from various perspectives, ranging from neuroscience to cognition, and from computational principles to engineering developments. It is written by leading international researchers in the field, with an emphasis on linking multiple disciplines and the impact such synergy can lead to in terms of both scientific breakthroughs and technology innovations. It is aimed at active researchers and interested scientists and engineers in related fields.
This text provides an introduction to computational aspects of early vision, in particular, color, stereo, and visual navigation. It integrates approaches from psychophysics and quantitative neurobiology, as well as theories and algorithms from machine vision and photogrammetry. When presenting mathematical material, it uses detailed verbal descriptions and illustrations to clarify complex points. The text is suitable for upper-level students in neuroscience, biology, and psychology who have basic mathematical skills and are interested in studying the mathematical modeling of perception.
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.
A comprehensive review of contemporary research in the vision sciences, reflecting the rapid advances of recent years. Visual science is the model system for neuroscience, its findings relevant to all other areas. This essential reference to contemporary visual neuroscience covers the extraordinary range of the field today, from molecules and cell assemblies to systems and therapies. It provides a state-of-the art companion to the earlier book The Visual Neurosciences (MIT Press, 2003). This volume covers the dramatic advances made in the last decade, offering new topics, new authors, and new chapters. The New Visual Neurosciences assembles groundbreaking research, written by international authorities. Many of the 112 chapters treat seminal topics not included in the earlier book. These new topics include retinal feature detection; cortical connectomics; new approaches to mid-level vision and spatiotemporal perception; the latest understanding of how multimodal integration contributes to visual perception; new theoretical work on the role of neural oscillations in information processing; and new molecular and genetic techniques for understanding visual system development. An entirely new section covers invertebrate vision, reflecting the importance of this research in understanding fundamental principles of visual processing. Another new section treats translational visual neuroscience, covering recent progress in novel treatment modalities for optic nerve disorders, macular degeneration, and retinal cell replacement. The New Visual Neurosciences is an indispensable reference for students, teachers, researchers, clinicians, and anyone interested in contemporary neuroscience. Associate Editors Marie Burns, Joy Geng, Mark Goldman, James Handa, Andrew Ishida, George R. Mangun, Kimberley McAllister, Bruno Olshausen, Gregg Recanzone, Mandyam Srinivasan, W.Martin Usrey, Michael Webster, David Whitney Sections Retinal Mechanisms and Processes Organization of Visual Pathways Subcortical Processing Processing in Primary Visual Cortex Brightness and Color Pattern, Surface, and Shape Objects and Scenes Time, Motion, and Depth Eye Movements Cortical Mechanisms of Attention, Cognition, and Multimodal Integration Invertebrate Vision Theoretical Perspectives Molecular and Developmental Processes Translational Visual Neuroscience
This work presents a bold new theory of the cognitive circuitry of the brain, with emphasis on the functioning of human vision. Departing from conventional precepts in the fields of artificial intelligence, neuroscience, and visual psychophysics, the author has developed a computational theory that provides a unitary explanation for a wide range of visual capabilities and behaviors, most of which have no accepted theoretical explanation. He describes a cortical mechanism termed "map-seeking” and demonstrates its explanatory power in areas as diverse as limb-motion planning and perceptual deficits associated with schizophrenia. The author argues that map-seeking is a fundamental, broadly applicable computational operation with algorithmic, neuronal, and analog electronic implementations, and that its generality makes it suitable as the core of a computational explanation for several cognitive functions. Variations of this map-seeking circuit perform recognition under visual transformations, tracking, scene segmentation, and determination of shape from view displacement. The mathematical principle on which map-seeking depends, a superposition ordering property, solves the combinatorial explosion problem that has plagued all other approaches to visual computation. The author demonstrates that map-seeking is capable of realistic performances in neuronal form and in many current technological procedures. Because of its breadth of application, it is a plausible cortical theory. Because it can be implemented electronically, it forms the basis for a computational technology highly suited for visual, and other perceptual, cognitive, and motor applications.
This textbook on vision reflects the integrated computational approach of modern research scientists, combining psychological, computational and neuroscientific perspectives.
A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille
Vision science has grown hugely in the past decades, but there have been few books showing readers how to adopt a computional approach to understanding visual perception, along with the underlying mechanisms in the brain. This book explains the computational principles and models of biological visual processing, and in particular, primate vision.
The book "Cognitive and Computational Neuroscience - Principles, Algorithms and Applications" will answer the following question and statements: System-level neural modeling: what and why? We know a lot about the brain! Need to integrate data: molecular/cellular/system levels. Complexity: need to abstract away higher-order principles. Models are tools to develop explicit theories, constrained by multiple levels (neural and behavioral). Key: models (should) make novel testable predictions on both neural and behavioral levels. Models are useful tools for guiding experiments. The hope is that the information provided in this book will trigger new researches that will help to connect basic neuroscience to clinical medicine.