Computational Algebra: Course And Exercises With Solutions

Computational Algebra: Course And Exercises With Solutions

Author: Ihsen Yengui

Publisher: World Scientific

Published: 2021-05-17

Total Pages: 283

ISBN-13: 981123826X

DOWNLOAD EBOOK

This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.


Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra

Author: Stephen Boyd

Publisher: Cambridge University Press

Published: 2018-06-07

Total Pages: 477

ISBN-13: 1316518965

DOWNLOAD EBOOK

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.


A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory

Author: Henri Cohen

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 556

ISBN-13: 3662029456

DOWNLOAD EBOOK

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.


Mathematics for Machine Learning

Mathematics for Machine Learning

Author: Marc Peter Deisenroth

Publisher: Cambridge University Press

Published: 2020-04-23

Total Pages: 392

ISBN-13: 1108569323

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Problems in Algebraic Number Theory

Problems in Algebraic Number Theory

Author: M. Ram Murty

Publisher: Springer Science & Business Media

Published: 2005-09-28

Total Pages: 354

ISBN-13: 0387269983

DOWNLOAD EBOOK

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved


Computational Commutative Algebra 1

Computational Commutative Algebra 1

Author: Martin Kreuzer

Publisher: Springer Science & Business Media

Published: 2008-07-15

Total Pages: 325

ISBN-13: 354067733X

DOWNLOAD EBOOK

This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.


Introduction to Algebra

Introduction to Algebra

Author: Peter J. Cameron

Publisher: Oxford University Press, USA

Published: 2008

Total Pages: 353

ISBN-13: 0198569130

DOWNLOAD EBOOK

This Second Edition of a classic algebra text includes updated and comprehensive introductory chapters,new material on axiom of Choice, p-groups and local rings, discussion of theory and applications, and over 300 exercises. It is an ideal introductory text for all Year 1 and 2 undergraduate students in mathematics.


Linear Algebra Done Right

Linear Algebra Done Right

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 1997-07-18

Total Pages: 276

ISBN-13: 9780387982595

DOWNLOAD EBOOK

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.


Exercises And Problems In Linear Algebra

Exercises And Problems In Linear Algebra

Author: John M Erdman

Publisher: World Scientific

Published: 2020-09-28

Total Pages: 220

ISBN-13: 9811220425

DOWNLOAD EBOOK

This book contains an extensive collection of exercises and problems that address relevant topics in linear algebra. Topics that the author finds missing or inadequately covered in most existing books are also included. The exercises will be both interesting and helpful to an average student. Some are fairly routine calculations, while others require serious thought.The format of the questions makes them suitable for teachers to use in quizzes and assigned homework. Some of the problems may provide excellent topics for presentation and discussions. Furthermore, answers are given for all odd-numbered exercises which will be extremely useful for self-directed learners. In each chapter, there is a short background section which includes important definitions and statements of theorems to provide context for the following exercises and problems.


The Center and Cyclicity Problems

The Center and Cyclicity Problems

Author: Valery Romanovski

Publisher: Springer Science & Business Media

Published: 2009-04-29

Total Pages: 336

ISBN-13: 0817647279

DOWNLOAD EBOOK

Using a computational algebra approach, this comprehensive text addresses the center and cyclicity problems as behaviors of dynamical systems and families of polynomial systems. The book gives the main properties of ideals in polynomial rings and their affine varieties followed by a discussion on the theory of normal forms and stability of differential equations. It contains numerous examples, pseudocode displays of all the computational algorithms, historical notes, nearly two hundred exercises, and an extensive bibliography, making it a suitable graduate textbook as well as research reference.