Computability and Complexity

Computability and Complexity

Author: Neil D. Jones

Publisher: MIT Press

Published: 1997

Total Pages: 494

ISBN-13: 9780262100649

DOWNLOAD EBOOK

Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series


Turing Computability

Turing Computability

Author: Robert I. Soare

Publisher: Springer

Published: 2016-06-20

Total Pages: 289

ISBN-13: 3642319335

DOWNLOAD EBOOK

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.


Theories of Computability

Theories of Computability

Author: Nicholas Pippenger

Publisher: Cambridge University Press

Published: 1997-05-28

Total Pages: 268

ISBN-13: 9780521553803

DOWNLOAD EBOOK

A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.


Automata and Computability

Automata and Computability

Author: Dexter C. Kozen

Publisher: Springer

Published: 2013-11-11

Total Pages: 399

ISBN-13: 364285706X

DOWNLOAD EBOOK

These are my lecture notes from CS381/481: Automata and Computability Theory, a one-semester senior-level course I have taught at Cornell Uni versity for many years. I took this course myself in thc fall of 1974 as a first-year Ph.D. student at Cornell from Juris Hartmanis and have been in love with the subject ever sin,:e. The course is required for computer science majors at Cornell. It exists in two forms: CS481, an honors version; and CS381, a somewhat gentler paced version. The syllabus is roughly the same, but CS481 go es deeper into thc subject, covers more material, and is taught at a more abstract level. Students are encouraged to start off in one or the other, then switch within the first few weeks if they find the other version more suitaLle to their level of mathematical skill. The purpose of t.hc course is twofold: to introduce computer science students to the rieh heritage of models and abstractions that have arisen over the years; and to dew!c'p the capacity to form abstractions of their own and reason in terms of them.


Computability and Complexity Theory

Computability and Complexity Theory

Author: Steven Homer

Publisher: Springer Science & Business Media

Published: 2011-12-09

Total Pages: 310

ISBN-13: 1461406811

DOWNLOAD EBOOK

This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes


Computability and Logic

Computability and Logic

Author: George S. Boolos

Publisher: Cambridge University Press

Published: 2007-09-17

Total Pages: 365

ISBN-13: 0521877520

DOWNLOAD EBOOK

This fifth edition of 'Computability and Logic' covers not just the staple topics of an intermediate logic course such as Godel's incompleteness theorems, but also optional topics that include Turing's theory of computability and Ramsey's theorem.


The Foundations of Computability Theory

The Foundations of Computability Theory

Author: Borut Robič

Publisher: Springer Nature

Published: 2020-11-13

Total Pages: 428

ISBN-13: 3662624214

DOWNLOAD EBOOK

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.


Computability

Computability

Author: Douglas S. Bridges

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 186

ISBN-13: 1461208637

DOWNLOAD EBOOK

Aimed at mathematicians and computer scientists who will only be exposed to one course in this area, Computability: A Mathematical Sketchbook provides a brief but rigorous introduction to the abstract theory of computation, sometimes also referred to as recursion theory. It develops major themes in computability theory, such as Rice's theorem and the recursion theorem, and provides a systematic account of Blum's complexity theory as well as an introduction to the theory of computable real numbers and functions. The book is intended as a university text, but it may also be used for self-study; appropriate exercises and solutions are included.


Handbook of Computability Theory

Handbook of Computability Theory

Author: E.R. Griffor

Publisher: Elsevier

Published: 1999-10-01

Total Pages: 741

ISBN-13: 0080533043

DOWNLOAD EBOOK

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.


Automata and Computability

Automata and Computability

Author: Ganesh Gopalakrishnan

Publisher: CRC Press

Published: 2019-03-04

Total Pages: 356

ISBN-13: 1351374281

DOWNLOAD EBOOK

Automata and Computability is a class-tested textbook which provides a comprehensive and accessible introduction to the theory of automata and computation. The author uses illustrations, engaging examples, and historical remarks to make the material interesting and relevant for students. It incorporates modern/handy ideas, such as derivative-based parsing and a Lambda reducer showing the universality of Lambda calculus. The book also shows how to sculpt automata by making the regular language conversion pipeline available through a simple command interface. A Jupyter notebook will accompany the book to feature code, YouTube videos, and other supplements to assist instructors and students Features Uses illustrations, engaging examples, and historical remarks to make the material accessible Incorporates modern/handy ideas, such as derivative-based parsing and a Lambda reducer showing the universality of Lambda calculus Shows how to "sculpt" automata by making the regular language conversion pipeline available through simple command interface Uses a mini functional programming (FP) notation consisting of lambdas, maps, filters, and set comprehension (supported in Python) to convey math through PL constructs that are succinct and resemble math Provides all concepts are encoded in a compact Functional Programming code that will tesselate with Latex markup and Jupyter widgets in a document that will accompany the books. Students can run code effortlessly href="https://github.com/ganeshutah/Jove.git/"here.