This report reviews the most important studies undertaken of the compressive failure mechanisms encountered in modern composite materials. It considers first the behaviour of unidirectional laminates, followed by unnotched and notched multidirectional structures. It then considers existing theoretical models. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database provides useful references for further reading.
Concern about global warming has led to renewed interest in the more sustainable use of natural fibres in composite materials. This important book reviews the wealth of recent research into improving the mechanical properties of natural-fibre thermoplastic composites so that they can be more widely used.The first part of the book provides an overview of the main types of natural fibres used in composites, how they are processed and, in particular, the way the fibre-matrix interface can be engineered to improve performance. Part two discusses the increasing use of natural-fibre composites in such areas as automotive and structural engineering, packaging and the energy sector. The final part of the book discusses ways of assessing the mechanical performance of natural-fibre composites.With its distinguished editor and team of contributors, Properties and performance of natural-fibre composites is a valuable reference for all those using these important materials in such areas as automotive and structural engineering. - Provides an overview of the types of natural fibres used in composites - Discusses fibre-matrix interface and how it can be engineered to improve performance - Examines the increasing use of natural-fibre composites in automotive and structural engineering and the packaging and energy sector
Bio-Based Polymers and Composites is the first book systematically describing the green engineering, chemistry and manufacture of biobased polymers and composites derived from plants. This book gives a thorough introduction to bio-based material resources, availability, sustainability, biobased polymer formation, extraction and refining technologies, and the need for integrated research and multi-disciplinary working teams. It provides an in-depth description of adhesives, resins, plastics, and composites derived from plant oils, proteins, starches, and natural fibers in terms of structures, properties, manufacturing, and product performance. This is an excellent book for scientists, engineers, graduate students and industrial researchers in the field of bio-based materials.* First book describing the utilization of crops to make high performance plastics, adhesives, and composites* Interdisciplinary approach to the subject, integrating genetic engineering, plant science, food science, chemistry, physics, nano-technology, and composite manufacturing.* Explains how to make green materials at low cost from soyoil, proteins, starch, natural fibers, recycled newspapers, chicken feathers and waste agricultural by-products.
This book is the first to deal with the important topic of the fire behaviour of fibre reinforced polymer composite materials. The book covers all of the key issues on the behaviour of composites in a fire. Also covered are fire protection materials for composites, fire properties of nanocomposites, fire safety regulations and standards, fire test methods, and health hazards from burning composites.
This study covers impact response, damage tolerance and failure of fibre-reinforced composite materials and structures. Materials development, analysis and prediction of structural behaviour and cost-effective design all have a bearing on the impact response of composites and this book brings together for the first time the most comprehensive and up-to-date research work from leading international experts. - State of the art analysis of impact response, damage tolerance and failure of FRC materials - Distinguished contributors provide expert analysis of the most recent materials and structures - Valuable tool for R&D engineers, materials scientists and designers
The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structure or result in unfavorable load paths. Emphasizing defect identification and restitution, Defects and Damage in Composite Materials and Structures explains how defects and damage in composite materials and structures impact composite component performance. Providing ready access to an extensive, descriptive list of defects and damage types, this must-have reference: Examines defect criticality in composite structures Recommends repair actions to restore structural integrity Discusses failure modes and mechanisms of composites due to defects Reviews NDI processes for finding and identifying defects in composite materials Relating defect detection methods to defect type, the author merges his experience in the field of in-service activities for composite airframe maintenance and repair with indispensable reports and articles on defects and damage in advanced composite materials from the last 50 years.
Cement-Based Composites takes a different approach from most other books in the field by viewing concrete as an advanced composite material, and by considering the properties and behaviour of cement-based materials from this stance. It deals particularly, but not exclusively, with newer forms of cement-based materials. This new edition takes a critical approach to the subject as well as presenting up-to-date knowledge. Emphasis is given to non-conventional reinforcement and design methods, problems at the materials' interfaces and to the durability of structures. High strength composites and novel forms of cement-based composites are described in detail. After a basic introduction the book explores the various components of these materials and their properties. It then deals with mechanical properties and considers characteristics under various loading and environmental conditions, and concludes by examining design, optimization and economics with particular emphasis on high-performance concretes. Researchers, graduate students and practising engineers will find this book valuable.
Concrete made using mineral cements, the raw materials which on earth are practically endless, is known as one of the oldest building materials and during the last decades of the twentieth century has become a dominant building material for general use. At the same time, the requirements of the quality of concrete and its performance properties, in particular compressive strength, durability, economical efficiency, and low negative impact of its manufacture on the environment have not yet been completely met. Bearing these requirements in mind, researchers and engineers worldwide are working on how to satisfy these requirements. This book has been written by researchers and experts in the field and provides the state of the art on recent progress achieved on the properties of concrete, including concrete in which industrial by-products are utilized. The book is dedicated to graduate students, researchers, and practicing engineers in related fields.