Comprehensive Nanoscience and Nanotechnology

Comprehensive Nanoscience and Nanotechnology

Author:

Publisher: Academic Press

Published: 2019-01-02

Total Pages: 1881

ISBN-13: 012812296X

DOWNLOAD EBOOK

Comprehensive Nanoscience and Technology, Second Edition, Five Volume Set allows researchers to navigate a very diverse, interdisciplinary and rapidly-changing field with up-to-date, comprehensive and authoritative coverage of every aspect of modern nanoscience and nanotechnology. Presents new chapters on the latest developments in the field Covers topics not discussed to this degree of detail in other works, such as biological devices and applications of nanotechnology Compiled and written by top international authorities in the field


Nanoscience and Nanotechnology

Nanoscience and Nanotechnology

Author: Vicki H. Grassian

Publisher: John Wiley & Sons

Published: 2008-12-19

Total Pages: 495

ISBN-13: 0470396601

DOWNLOAD EBOOK

This comprehensive book covers various aspects of nanoscience and nanotechnology and what is known about the potential environmental and health impacts. Divided into three main sections, the book addresses the toxicity of nanomaterials, fate and transport of nanomaterials in the environment, and occupational health aspects of nanotechonology.


Comprehensive Nanoscience and Technology

Comprehensive Nanoscience and Technology

Author:

Publisher: Academic Press

Published: 2010-10-29

Total Pages: 2785

ISBN-13: 0123743966

DOWNLOAD EBOOK

From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.


Introduction to Nanotechnology

Introduction to Nanotechnology

Author: Charles P. Poole, Jr.

Publisher: John Wiley & Sons

Published: 2003-05-30

Total Pages: 408

ISBN-13: 9780471079354

DOWNLOAD EBOOK

This self-confessed introduction provides technical administrators and managers with a broad, practical overview of the subject and gives researchers working in different areas an appreciation of developments in nanotechnology outside their own fields of expertise.


Nanocomputing

Nanocomputing

Author: Jang-Yu Hsu

Publisher: CRC Press

Published: 2017-03-03

Total Pages: 368

ISBN-13: 981424127X

DOWNLOAD EBOOK

This book provides a comprehensive overview of the computational physics for nanoscience and nanotechnology. Based on MATLAB and the C++ distributed computing paradigm, the book gives instructive explanations of the underlying physics for mesoscopic systems with many listed programs that readily compute physical properties into nanoscales. Many generated graphical pictures demonstrate not only the principles of physics, but also the methodology of computing.


Applications of Nanoscience in Photomedicine

Applications of Nanoscience in Photomedicine

Author: Michael R. Hamblin

Publisher: Elsevier

Published: 2015-02-17

Total Pages: 573

ISBN-13: 1908818786

DOWNLOAD EBOOK

Nanoscience has become one of the key growth areas in recent years. It can be integrated into imaging and therapy to increase the potential for novel applications in the field of photomedicine. In the past commercial applications of nanoscience have been limited to materials science research only, however, in recent years nanoparticles are rapidly being incorporated into industrial and consumer products. This is mainly due to the expansion of biomedical related research and the burgeoning field of nanomedicine. Applications of Nanoscience in Photomedicine covers a wide range of nanomaterials including nanoparticles used for drug delivery and other emerging fields such as optofluidics, imaging and SERS diagnostics. Introductory chapters are followed by a section largely concerned with imaging, and finally a section on nanoscience-enabled therapeutics. - Covers a comprehensive up-to-date information on nanoscience - Focuses on the combination of photomedicine with nanotechnology to enhance the diversity of applications - Pioneers in the field have written their respective chapters - Opens a plethora of possibilities for developing future nanomedicine - Easy to understand and yet intensive coverage chapter by chapter


Nanowires

Nanowires

Author: Anqi Zhang

Publisher: Springer

Published: 2016-07-26

Total Pages: 327

ISBN-13: 3319419811

DOWNLOAD EBOOK

This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, morphology, structure, doping and assembly, as well as incorporation with other materials, offer a variety of nanoscale building blocks with unique properties.


Nanoarchitectonics in Biomedicine

Nanoarchitectonics in Biomedicine

Author: Alexandru Mihai Grumezescu

Publisher: William Andrew

Published: 2019-03-20

Total Pages: 724

ISBN-13: 0128172614

DOWNLOAD EBOOK

Nanoarchitectonics in Biomedicine describes this new area of nanoscience that has emerged as a major branch of nanoscience. The book brings together recent applications and discusses the advantages and disadvantages of each process, offering international perspectives on the technologies based on these findings. It offers new insights for nanoarchitectonics, starting with the currently used methods of synthesis and characterization of such materials, along with their biomedical applications. Authored by a wide range of international scientists, this volume shows how nanoarchitectonics is being used to create more efficient medical treatment solutions. Users will find this to be an important research resource for those wanting to learn more on the emerging topic of nanoarchitectonics in biomedical science. - Explores how design aspects, smart materials and personalized materials are used in biomedicine today - Offers global perspectives on how nanoarchitectonics is used in different regions - Presents an important research resource for those wanting to learn more on the emerging topic of nanoarchitectonics in biomedical science


Introduction to Nanoscience

Introduction to Nanoscience

Author: Stuart Lindsay

Publisher: OUP Oxford

Published: 2009-10-22

Total Pages: 480

ISBN-13: 0191609277

DOWNLOAD EBOOK

Nanoscience is not physics, chemistry, engineering or biology. It is all of them, and it is time for a text that integrates the disciplines. This is such a text, aimed at advanced undergraduates and beginning graduate students in the sciences. The consequences of smallness and quantum behaviour are well known and described Richard Feynman's visionary essay 'There's Plenty of Room at the Bottom' (which is reproduced in this book). Another, critical, but thus far neglected, aspect of nanoscience is the complexity of nanostructures. Hundreds, thousands or hundreds of thousands of atoms make up systems that are complex enough to show what is fashionably called 'emergent behaviour'. Quite new phenomena arise from rare configurations of the system. Examples are the Kramer's theory of reactions (Chapter 3), the Marcus theory of electron transfer (Chapter 8), and enzyme catalysis, molecular motors, and fluctuations in gene expression and splicing, all covered in the final Chapter on Nanobiology. The book is divided into three parts. Part I (The Basics) is a self-contained introduction to quantum mechanics, statistical mechanics and chemical kinetics, calling on no more than basic college calculus. A conceptual approach and an array of examples and conceptual problems will allow even those without the mathematical tools to grasp much of what is important. Part II (The Tools) covers microscopy, single molecule manipulation and measurement, nanofabrication and self-assembly. Part III (Applications) covers electrons in nanostructures, molecular electronics, nano-materials and nanobiology. Each chapter starts with a survey of the required basics, but ends by making contact with current research literature.