This book constitutes the thoroughly refereed post-proceedings of the 13th International Monterey Workshop on Composition of Embedded Systems: Scientific and Industrial Issues, held in Paris, France, in October 2006. The 12 revised full papers presented were carefully selected during two rounds of reviewing and improvement from numerous submissions. The workshop discussed a range of challenges in embedded systems design that require further major advances in technology.
This book presents the thoroughly refereed and revised post-workshop proceedings of the 17th Monterey Workshop, held in Oxford, UK, in March 2012. The workshop explored the challenges associated with the Development, Operation and Management of Large-Scale complex IT Systems. The 21 revised full papers presented were significantly extended and improved by the insights gained from the productive and lively discussions at the workshop, and the feedback from the post-workshop peer reviews.
This book presents the thoroughly refereed and revised post-workshop proceedings of the 16th Monterey Workshop, held in Redmond, WA, USA, in March/April 2010. The theme of the workshop was Foundations of Computer Software, with a special focus on Modeling, Development, and Verification of Adaptive Systems. The 13 revised full papers presented were carefully reviewed and selected from numerous submissions for inclusion in the book. The contributions show how the foundations and development techniques of computer software could be adapted even for industrial safety-critical and business-critical applications to improve dependability and robustness and to ensure information privacy and security.
This book presents cutting-edge research on innovative human systems integration and human–machine interaction, with an emphasis on artificial intelligence and automation, as well as computational modeling and simulation. It covers a wide range of applications in the area of design, construction and operation of products, systems and services, including lifecycle development and human–technology interaction. The book describes advanced methodologies and tools for evaluating and improving interface usability, new models, and case studies and best practices in virtual, augmented and mixed reality systems, with a special focus on dynamic environments. It also discusses various factors concerning the human user, hardware, and artificial intelligence software. Based on the proceedings of the 2nd International Conference on Intelligent Human Systems Integration (IHSI 2019), held on February 7–10, 2019, in San Diego, California, USA, the book also examines the forces that are currently shaping the nature of computing and cognitive systems, such as the need to reduce hardware costs; the importance of infusing intelligence and automation; the trend toward hardware miniaturization and power reduction; the need for a better assimilation of computation in the environment; and social concerns regarding access to computers and systems for people with special needs. It offers a timely survey and a practice-oriented reference guide for policy- and decision-makers, human factors engineers, systems developers and users alike.
This book presents the thoroughly refereed and revised proceedings of the 15th Monterey Workshop, held in Budapest, Hungary, September 24-26, 2008. The theme of the workshop was Foundations of Computer Software, Future Trends and Techniques for Development. The 13 revised full papers presented at the workshop explore, how the foundations and development techniques of computer software could be adapted to address such a challenge. Material presented in the papers spans the whole software life cycle, starting from specification and analysis, design and the choice of architectures, large scale, real-world software development, code generation and configuration, deployment, and evolution.
An introduction to the engineering principles of embedded systems, with a focus on modeling, design, and analysis of cyber-physical systems. The most visible use of computers and software is processing information for human consumption. The vast majority of computers in use, however, are much less visible. They run the engine, brakes, seatbelts, airbag, and audio system in your car. They digitally encode your voice and construct a radio signal to send it from your cell phone to a base station. They command robots on a factory floor, power generation in a power plant, processes in a chemical plant, and traffic lights in a city. These less visible computers are called embedded systems, and the software they run is called embedded software. The principal challenges in designing and analyzing embedded systems stem from their interaction with physical processes. This book takes a cyber-physical approach to embedded systems, introducing the engineering concepts underlying embedded systems as a technology and as a subject of study. The focus is on modeling, design, and analysis of cyber-physical systems, which integrate computation, networking, and physical processes. The second edition offers two new chapters, several new exercises, and other improvements. The book can be used as a textbook at the advanced undergraduate or introductory graduate level and as a professional reference for practicing engineers and computer scientists. Readers should have some familiarity with machine structures, computer programming, basic discrete mathematics and algorithms, and signals and systems.
Architecture of Network Systems explains the practice and methodologies that will allow you to solve a broad range of problems in system design, including problems related to security, quality of service, performance, manageability, and more. Leading researchers Dimitrios Serpanos and Tilman Wolf develop architectures for all network sub-systems, bridging the gap between operation and VLSI.This book provides comprehensive coverage of the technical aspects of network systems, including system-on-chip technologies, embedded protocol processing and high-performance, and low-power design. It develops a functional approach to network system architecture based on the OSI reference model, which is useful for practitioners at every level. It also covers both fundamentals and the latest developments in network systems architecture, including network-on-chip, network processors, algorithms for lookup and classification, and network systems for the next-generation Internet.The book is recommended for practicing engineers designing the architecture of network systems and graduate students in computer engineering and computer science studying network system design. - This is the first book to provide comprehensive coverage of the technical aspects of network systems, including processing systems, hardware technologies, memory managers, software routers, and more - Develops a systematic approach to network architectures, based on the OSI reference model, that is useful for practitioners at every level - Covers both the important basics and cutting-edge topics in network systems architecture, including Quality of Service and Security for mobile, real-time P2P services, Low-Power Requirements for Mobile Systems, and next generation Internet systems
This book introduces a modern approach to embedded system design, presenting software design and hardware design in a unified manner. It covers trends and challenges, introduces the design and use of single-purpose processors ("hardware") and general-purpose processors ("software"), describes memories and buses, illustrates hardware/software tradeoffs using a digital camera example, and discusses advanced computation models, controls systems, chip technologies, and modern design tools. For courses found in EE, CS and other engineering departments.
Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-read guide helps you cultivate a host of good development practices, based on classic software design patterns and new patterns unique to embedded programming. Learn how to build system architecture for processors, not operating systems, and discover specific techniques for dealing with hardware difficulties and manufacturing requirements. Written by an expert whoâ??s created embedded systems ranging from urban surveillance and DNA scanners to childrenâ??s toys, this book is ideal for intermediate and experienced programmers, no matter what platform you use. Optimize your system to reduce cost and increase performance Develop an architecture that makes your software robust in resource-constrained environments Explore sensors, motors, and other I/O devices Do more with less: reduce RAM consumption, code space, processor cycles, and power consumption Learn how to update embedded code directly in the processor Discover how to implement complex mathematics on small processors Understand what interviewers look for when you apply for an embedded systems job "Making Embedded Systems is the book for a C programmer who wants to enter the fun (and lucrative) world of embedded systems. Itâ??s very well writtenâ??entertaining, evenâ??and filled with clear illustrations." â??Jack Ganssle, author and embedded system expert.
Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a transmission electron microscope system built by FEI Company. Traditionally, transmission electron microscopes are manually operated scientific instruments, but they also have enormous potential for use in industrial applications. However, this new market has quite different characteristics. There are strong demands for cost-effective analysis, accurate and precise measurements, and ease-of-use. These demands can be translated into new system qualities, e.g. reliability, predictability and high throughput, as well as new functions, e.g. automation of electron microscopic analyses, automated focusing and positioning functions. From scientific instrument to industrial machine takes a pragmatic approach to the problem of architectural stress. In particular, it describes the outcomes of the Condor project, a joint endeavour by a consortium of industrial and academic partners. In this collaboration an integrated approach was essential to successfully combine various scientific results and show the first steps towards a new direction. System modelling and prototyping were the key techniques to develop better understanding and innovative solutions to the problems associated with architectural stress. From scientific instruments to industrial machine is targeted mainly at industrial practitioners, in particular system architects and engineers working on high tech systems. It can therefore be read without particular knowledge of electron microscope systems or microscopic applications. The book forms a bridge between academic and applied science, and high tech industrial practice. By showing the approaches and solutions developed for the electron microscope, it is hoped that system designers will gain some insights in how to deal with architectural stress in similar challenges in the high tech industry.