Concrete is a global material that underwrites commercial wellbeing and social development. The pressure for change and improvement of performance is relentless and necessary. Concrete must keep evolving to satisfy the increasing demands of all its users.
The first textbook on the design of FRP for structural engineering applications Composites for Construction is a one-of-a-kind guide to understanding fiber-reinforced polymers (FRP) and designing and retrofitting structures with FRP. Written and organized like traditional textbooks on steel, concrete, and wood design, it demystifies FRP composites and demonstrates how both new and retrofit construction projects can especially benefit from these materials, such as offshore and waterfront structures, bridges, parking garages, cooling towers, and industrial buildings. The code-based design guidelines featured in this book allow for demonstrated applications to immediately be implemented in the real world. Covered codes and design guidelines include ACI 440, ASCE Structural Plastics Design Manual, EUROCOMP Design Code, AASHTO Specifications, and manufacturer-published design guides. Procedures are provided to the structural designer on how to use this combination of code-like documents to design with FRP profiles. In four convenient sections, Composites for Construction covers: * An introduction to FRP applications, products and properties, and to the methods of obtaining the characteristic properties of FRP materials for use in structural design * The design of concrete structural members reinforced with FRP reinforcing bars * Design of FRP strengthening systems such as strips, sheets, and fabrics for upgrading the strength and ductility of reinforced concrete structural members * The design of trusses and frames made entirely of FRP structural profiles produced by the pultrusion process
High-strength materials offer alternatives to frequently used materials for high-rise construction. A material of higher strength means a smaller member size is required to resist the design load. However, high-strength concrete is brittle, and high-strength thin steel plates are prone to local buckling. A solution to overcome such problems is to adopt a steel-concrete composite design in which concrete provides lateral restraint to steel plates against local buckling, and steel plates provide confinement to high-strength concrete. Design of Steel-Concrete Composite Structures Using High Strength Materials provides guidance on the design of composite steel-concrete structures using combined high-strength concretes and steels. The book includes a database of over 2,500 test results on composite columns to evaluate design methods, and presents calculations to determine critical parameters affecting the strength and ductility of high-strength composite columns. Finally, the book proposes design methods for axial-moment interaction curves in composite columns. This allows a unified approach to the design of columns with normal- and high-strength steel concrete materials. This book offers civil engineers, structural engineers, and researchers studying the mechanical performance of composite structures in the use of high-strength materials to design and construct advanced tall buildings. - Presents the design and construction of composite structures using high-strength concrete and high-strength steel, complementing and extending Eurocode 4 standards - Addresses a gap in design codes in the USA, China, Europe and Japan to cover composite structures using high-strength concrete and steel in a comprehensive way - Gives insight into the design of concrete-filled steel tubes and concrete-encased steel members - Suggests a unified approach to designing columns with normal- and high-strength steel and concrete
Composite materials have been representing most significant breakthroughs in various industrial applications, particularly in aerospace structures, during the past thirty five years. The primary goal of Advanced Mechanics of Composite Materials is the combined presentation of advanced mechanics, manufacturing technology, and analysis of composite materials. This approach lets the engineer take into account the essential mechanical properties of the material itself and special features of practical implementation, including manufacturing technology, experimental results, and design characteristics. Giving complete coverage of the topic: from basics and fundamentals to the advanced analysis including practical design and engineering applications. At the same time including a detailed and comprehensive coverage of the contemporary theoretical models at the micro- and macro- levels of material structure, practical methods and approaches, experimental results, and optimisation of composite material properties and component performance. The authors present the results of more than 30 year practical experience in the field of design and analysis of composite materials and structures. * Eight chapters progressively covering all structural levels of composite materials from their components through elementary plies and layers to laminates* Detailed presentation of advanced mechanics of composite materials * Emphasis on nonlinear material models (elasticity, plasticity, creep) and structural nonlinearity
This timely volume presents a range of critical topics on the use of composite materials in civil engineering; industrial, commercial, and residential structures; and historic buildings. Structural strengthening techniques based on composite materials, including, but not limited to, fiber-reinforced polymers, fiber-reinforced glasses, steel-reinforced polymers, and steel-reinforced glasses represent a practice employed internationally and have become an important component in the restoration of buildings impacted by natural hazards and other destructive forces. New Composite Materials: Selection, Design, and Application stands as a highly relevant and diverse effort, distinct from other technical publications dealing with building issues. The book focuses extensively on characterization of techniques employed for structural restoration and examines in detail an assortment of materials such as concrete, wood, masonry, and steel.
This book introduces different advanced composite materials used in construction of civil engineering infrastructures. It reflects the latest manufacturing processes and applications in the civil structures. This book also includes test cases and its validation with finite element method using computer software. Moreover, the book also deals with design methodology of advanced composite materials based on different applications. The comprehensive overview of the state-of-the-art research on the composite materials presented herein is of interest to scientists, researchers, students and engineers, and practitioners in general working in area of innovative composite materials and structures. This book is also helpful for Ph.D. research scholars for developing their fundamental understanding on advanced materials, and it is also appropriate for master and undergraduate level courses on composite materials.
This book presents an introduction, a discussion of the concept of the design and the concrete’s development, and the properties and testing of the concrete in fresh and hardened stages. After an introduction to the principles of cement and concrete composites, the reader will find information on the principles of quantum-scaled cement, low-carbon cement, fiber-reinforced concrete, reactive powder concrete, and tailor-made recycled aggregate concrete.
This book deals with the analysis and behaviour of composite structural members that are made by joining a steel component to a concrete component. The emphasis of the book is to impart a fundamental understanding of how composite structures work, so engineers develop a feel for the behaviour of the structure, often missing when design is based solely by using codes of practice or by the direct application of prescribed equations. It is not the object to provide quick design procedures for composite members, as these are more than adequately covered by recourse to such aids as safe load tables. The subject should therefore be of interest to practising engineers, particularly if they are involved in the design of non-standard or unusual composite structures for buildings and bridges, or are involved in assessing, upgrading, strengthening or repairing existing composite structures. The fundamentals in composite construction are covered first, followed by more advanced topics that include: behaviour of mechanical and rib shear connectors; local buckling; beams with few shear connectors; moment redistribution and lateral-distortional buckling in continuous beams; longitudinal splitting; composite beams with service ducts; composite profiled beams and profiled slabs; composite columns; and the fatigue design and assessment of composite bridge beams.
The use of fibrous materials in civil engineering, both as structural reinforcement and in non-structural applications such as geotextiles, is an important and interesting development. Fibrous and composite materials for civil engineering applications analyses the types and properties of fibrous textile and structures and their applications in reinforcement and civil engineering.Part one introduces different types of fibrous textiles and structures. Chapters cover the properties of natural and man-made fibres and of yarns, as well as an overview of textile structures. Part two focuses on fibrous material use in concrete reinforcement, with chapters on the properties and applications of steel fibre reinforced concrete, natural fibre reinforced concrete and the role of fibre reinforcement in mitigating shrinkage cracks. In part three, the applications of fibrous material-based composites in civil engineering are covered. Chapters concentrate on production techniques and applications such as reinforcement of internal structures, structural health monitoring and textile materials in architectural membranes.With its distinguished editor and international team of contributors, Fibrous and composite materials for civil engineering applications is a standard reference for fabric and composite manufacturers, civil engineers and professionals, as well as academics with a research interest in this field. - Explores the development of fibrous materials in civil engineering, both as structural reinforcement and in non-structural applications such as geotextiles - Key topics include short fibre reinforced concrete, natural fibre reinforced concrete and high performance fibre reinforced cementitious composites - A standard reference for fabric and composite manufacturers, civil engineers and professionals, as well as academics with a research interest in this field