Author: and Director NIBS Neuroscience Program University of Southern California Larry W. Swanson Milo Don and Lucille Appleman Professor of Biological Sciences
Depending on your point of view the brain is an organ, a machine, a biological computer, or simply the most important component of the nervous system. How does it work as a whole? What are its major parts and how are they interconnected to generate thinking, feelings, and behavior? This book surveys 2,500 years of scientific thinking about these profoundly important questions from the perspective of fundamental architectural principles, and then proposes a new model for the basic plan of neural systems organization based on an explosion of structural data emerging from the neuroanatomy revolution of the 1970's. The importance of a balance between theoretical and experimental morphology is stressed throughout the book. Great advances in understanding the brain's basic plan have come especially from two traditional lines of biological thought-- evolution and embryology, because each begins with the simple and progresses to the more complex. Understanding the organization of brain circuits, which contain thousands of links or pathways, is much more difficult. It is argued here that a four-system network model can explain the structure-function organization of the brain. Possible relationships between neural networks and gene networks revealed by the human genome project are explored in the final chapter. The book is written in clear and sparkling prose, and it is profusely illustrated. It is designed to be read by anyone with an interest in the basic organization of the brain, from neuroscience to philosophy to computer science to molecular biology. It is suitable for use in neuroscience core courses because it presents basic principles of the structure of the nervous system in a systematic way.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
An Introduction to Nervous Systemspresents the principles of neurobiology from an evolutionary perspective — from single-celled organisms to complex invertebrates such as flies — and is ideal for use as a supplemental textbook. Greenspan describes the mechanisms that allow behavior to become ever more sophisticated — from simple avoidance behavior of Parameciumthrough to the complex cognitive behaviors of the honeybee — and shows how these mechanisms produce the increasing neural complexity found in these organisms. The book ends with a discussion of what is universal about nervous systems and what may be required, neurobiologically, to be human. This novel and highly readable presentation of fundamental principles of neurobiology is designed to be accessible to undergraduate and graduate students not already steeped in the subject.
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
The development of a brain from its simple beginnings in the embryo to the extraordinarily complex fully-functional adult structure is a truly remarkable process. Understanding how it occurs remains a formidable challenge despite enormous advances over the last century and current intense world-wide scientific research. A greater knowledge of how nervous systems construct themselves will bring huge benefits for human health and future technologies. Unravelling the mechanisms that lead to the development of healthy brains should help scientists tackle currently incurable diseases of the nervous system such as autism, epilepsy and schizophrenia (to name but a few), discover more about the processes that cause the uncontrolled growth associated with cancer and develop possible treatments. Building Brains provides a highly visual and readily accessible introduction to the main events that occur during neural development and the mechanisms by which they occur. Aimed at undergraduate students and postgraduates new to the field, who may not have a background in neuroscience and/or molecular genetics, it explains how cells in the early embryo first become neural, how their proliferation is controlled, what regulates the types of neural cells they become, how neurons connect to each other, how these connections are later refined under the influence of neural activity including that arising from experience, and why some neurons normally die. Key Features: A concise illustrated guide focusing on the core elements of current understanding of neural development, emphasising common principles underlying developmental mechanisms and supplemented by suggestions for further reading. Text boxes throughout provide further detail on selected major advances, issues of particular uncertainty or controversy and examples of human diseases that result from abnormal development. A balanced mammalian/non-mammalian perspective, drawing on examples from model organisms including the fruit fly, nematode worm, frog, zebrafish, chick, mouse, ferret, cat, monkey and human, and emphasising mechanisms that are conserved across species. Introduces the methods for studying neural development including genetics, transgenic technologies, advanced microscopy and computational modeling, allowing the reader to understand the main evidence underlying research advances. Student-friendly, full colour artwork reinforces important concepts; an extensive glossary and definitions in page margins help readers from different backgrounds; chapter summaries stress important points and aid revision. Associated Website includes a complete set of figures from the textbook.
Discover your body’s neural pathways to calmness, safety, and connection. An intense conversation, a spat with a partner, or even an obnoxious tweet—these situations aren’t life-or-death, yet we often react as if they are. That’s because our bodies treat most perceived threats the same way. Yet one approach has proven to be incredibly effective in training our nervous system to stop overreacting and start responding to the world with greater safety and ease: Polyvagal Theory. In Anchored, expert teacher Deb Dana shares a down-to-earth presentation of Polyvagal Theory, then brings the science to life with practical, everyday ways to transform your relationship with your body. Using field-tested techniques, Dana helps you master the skills to become more aware of your nervous system moment to moment—and change the way you respond to the great and small challenges of life. Here, you’ll explore: • Polyvagal Theory—get to know the biology and function of your vagus nerve, the highway of the nervous system • Befriending Your Nervous System—attune to what’s going on in your body by developing your “neuroception” • Using Your Vagal Brake—discover key techniques to consciously regulate the intensity of your emotions • Connection and Protection—learn to recognize and influence your internal cues for safety and danger • Your Social Engagement System—find ways to create nourishing relationships with others and the world around you • Practices and guidance to gently shape your nervous system for greater resilience, intuition, safety, and wonder Through guided imagery, meditation, self-inquiry, and more, Anchored offers a practical user’s manual for moving from a place of fear and panic into a grounded space of balance and confidence. “Once we know how our nervous system works, we can work with it,” teaches Deb Dana. “We can learn to access an embodied, biological resource that is always present, available, and there to guide us toward well-being.”
A collection of groundbreaking research by a leading figure in neuroscience. This book compiles, for the first time, Stephen W. Porges’s decades of research. A leading expert in developmental psychophysiology and developmental behavioral neuroscience, Porges is the mind behind the groundbreaking Polyvagal Theory, which has startling implications for the treatment of anxiety, depression, trauma, and autism. Adopted by clinicians around the world, the Polyvagal Theory has provided exciting new insights into the way our autonomic nervous system unconsciously mediates social engagement, trust, and intimacy.
A New York Times Notable Book A stunningly original exploration of the ties that bind us to the beautiful, ancient, astoundingly accomplished, largely unknown, and unfathomably different species with whom we share the world. For as long as humans have existed, insects have been our constant companions. Yet we hardly know them, not even the ones we’re closest to: those that eat our food, share our beds, and live in our homes. Organizing his book alphabetically, Hugh Raffles weaves together brief vignettes, meditations, and extended essays, taking the reader on a mesmerizing exploration of history and science, anthropology and travel, economics, philosophy, and popular culture. Insectopedia shows us how insects have triggered our obsessions, stirred our passions, and beguiled our imaginations.