Multiscale Transforms with Application to Image Processing

Multiscale Transforms with Application to Image Processing

Author: Aparna Vyas

Publisher: Springer

Published: 2017-12-05

Total Pages: 258

ISBN-13: 9811072728

DOWNLOAD EBOOK

This book provides an introduction to image processing, an overview of the transforms which are most widely used in the field of image processing, and an introduction to the application of multiscale transforms in image processing. The book is divided into three parts, with the first part offering the reader a basic introduction to image processing. The second part of the book starts with a chapter on Fourier analysis and Fourier transforms, wavelet analysis, and ends with a chapter on new multiscale transforms. The final part of the book deals with all of the most important applications of multiscale transforms in image processing. The chapters consist of both tutorial and highly advanced material, and as such the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications. The technique of solving problems in the transform domain is common in applied mathematics and widely used in research and industry, but is a somewhat neglected subject within the undergraduate curriculum. It is hoped that faculty can use this book to create a course that can be offered early in the curriculum and fill this void. Also, the book is intended to be used as a reference manual for scientists who are engaged in image processing research, developers of image processing hardware and software systems, and practising engineers and scientists who use image processing as a tool in their applications.


Signal Analysis and Prediction

Signal Analysis and Prediction

Author: Ales Prochazka

Publisher: Springer Science & Business Media

Published: 1998-12-23

Total Pages: 536

ISBN-13: 9780817640422

DOWNLOAD EBOOK

Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.


Advanced Concepts for Intelligent Vision Systems

Advanced Concepts for Intelligent Vision Systems

Author: Jacques Blanc-Talon

Publisher: Springer Nature

Published: 2020-02-05

Total Pages: 576

ISBN-13: 3030406059

DOWNLOAD EBOOK

This book constitutes the proceedings of the 20th INternational Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2020, held in Auckland, New Zealand, in February 2020. The 48 papers presented in this volume were carefully reviewed and selected from a total of 78 submissions. They were organized in topical sections named: deep learning; biomedical image analysis; biometrics and identification; image analysis; image restauration, compression and watermarking; tracking, and mapping and scene analysis.


Machine Intelligence and Signal Analysis

Machine Intelligence and Signal Analysis

Author: M. Tanveer

Publisher: Springer

Published: 2018-08-07

Total Pages: 757

ISBN-13: 981130923X

DOWNLOAD EBOOK

The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.


Proceedings of International Conference on Computer Vision and Image Processing

Proceedings of International Conference on Computer Vision and Image Processing

Author: Balasubramanian Raman

Publisher: Springer

Published: 2016-12-22

Total Pages: 623

ISBN-13: 981102104X

DOWNLOAD EBOOK

This edited volume contains technical contributions in the field of computer vision and image processing presented at the First International Conference on Computer Vision and Image Processing (CVIP 2016). The contributions are thematically divided based on their relation to operations at the lower, middle and higher levels of vision systems, and their applications. The technical contributions in the areas of sensors, acquisition, visualization and enhancement are classified as related to low-level operations. They discuss various modern topics – reconfigurable image system architecture, Scheimpflug camera calibration, real-time autofocusing, climate visualization, tone mapping, super-resolution and image resizing. The technical contributions in the areas of segmentation and retrieval are classified as related to mid-level operations. They discuss some state-of-the-art techniques – non-rigid image registration, iterative image partitioning, egocentric object detection and video shot boundary detection. The technical contributions in the areas of classification and retrieval are categorized as related to high-level operations. They discuss some state-of-the-art approaches – extreme learning machines, and target, gesture and action recognition. A non-regularized state preserving extreme learning machine is presented for natural scene classification. An algorithm for human action recognition through dynamic frame warping based on depth cues is given. Target recognition in night vision through convolutional neural network is also presented. Use of convolutional neural network in detecting static hand gesture is also discussed. Finally, the technical contributions in the areas of surveillance, coding and data security, and biometrics and document processing are considered as applications of computer vision and image processing. They discuss some contemporary applications. A few of them are a system for tackling blind curves, a quick reaction target acquisition and tracking system, an algorithm to detect for copy-move forgery based on circle block, a novel visual secret sharing scheme using affine cipher and image interleaving, a finger knuckle print recognition system based on wavelet and Gabor filtering, and a palmprint recognition based on minutiae quadruplets.


Biomedical Image Analysis

Biomedical Image Analysis

Author: Rangaraj M. Rangayyan

Publisher: CRC Press

Published: 2004-12-30

Total Pages: 1312

ISBN-13: 0203492544

DOWNLOAD EBOOK

Computers have become an integral part of medical imaging systems and are used for everything from data acquisition and image generation to image display and analysis. As the scope and complexity of imaging technology steadily increase, more advanced techniques are required to solve the emerging challenges. Biomedical Image Analysis demonstr


Wavelet Methods in Mathematical Analysis and Engineering

Wavelet Methods in Mathematical Analysis and Engineering

Author: Alain Damlamian

Publisher: World Scientific

Published: 2010

Total Pages: 190

ISBN-13: 9814322865

DOWNLOAD EBOOK

This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a state-of-the-art in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented. Applications range for the reconstruction of noisy or blurred images, pattern and face recognition, to nonlinear approximation in strongly anisotropic contexts, and to the classification tools based on multifractal analysis.


Discrete Wavelet Transforms

Discrete Wavelet Transforms

Author: Hannu Olkkonen

Publisher: BoD – Books on Demand

Published: 2011-08-29

Total Pages: 312

ISBN-13: 9533074825

DOWNLOAD EBOOK

The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications.


Image Restoration

Image Restoration

Author: Bahadir Kursat Gunturk

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 377

ISBN-13: 1439869561

DOWNLOAD EBOOK

Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addressing the many advances in imaging, computing, and communications technologies, this reference strikes just the right balance of coverage between core fundamental principles and the latest developments in this area. Its content was designed based on the idea that the reproducibility of published works on algorithms makes it easier for researchers to build on each other’s work, which often benefits the vitality of the technical community as a whole. For that reason, this book is as experimentally reproducible as possible. Topics covered include: Image denoising and deblurring Different image restoration methods and recent advances such as nonlocality and sparsity Blind restoration under space-varying blur Super-resolution restoration Learning-based methods Multi-spectral and color image restoration New possibilities using hybrid imaging systems Many existing references are scattered throughout the literature, and there is a significant gap between the cutting edge in image restoration and what we can learn from standard image processing textbooks. To fill that need but avoid a rehash of the many fine existing books on this subject, this reference focuses on algorithms rather than theories or applications. Giving readers access to a large amount of downloadable source code, the book illustrates fundamental techniques, key ideas developed over the years, and the state of the art in image restoration. It is a valuable resource for readers at all levels of understanding.


Recent Advances in Signal Processing

Recent Advances in Signal Processing

Author: Ashraf Zaher

Publisher: BoD – Books on Demand

Published: 2009-11-01

Total Pages: 562

ISBN-13: 9533070021

DOWNLOAD EBOOK

The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity.