An Introduction to Complex Analysis in Several Variables
Author: L. Hormander
Publisher: Elsevier
Published: 1973-02-12
Total Pages: 227
ISBN-13: 0444105239
DOWNLOAD EBOOKAn Introduction to Complex Analysis in Several Variables
Read and Download eBook Full
Author: L. Hormander
Publisher: Elsevier
Published: 1973-02-12
Total Pages: 227
ISBN-13: 0444105239
DOWNLOAD EBOOKAn Introduction to Complex Analysis in Several Variables
Author: Robert Clifford Gunning
Publisher: American Mathematical Soc.
Published: 2009
Total Pages: 338
ISBN-13: 0821821652
DOWNLOAD EBOOKThe theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.
Author: Volker Scheidemann
Publisher: Springer Nature
Published: 2023
Total Pages: 239
ISBN-13: 3031264282
DOWNLOAD EBOOKThis book gives a comprehensive introduction to complex analysis in several variables. While it focusses on a number of topics in complex analysis rather than trying to cover as much material as possible, references to other parts of mathematics such as functional analysis or algebras are made to help broaden the view and the understanding of the chosen topics. A major focus are extension phenomena alien to the one-dimensional theory, which are expressed in the famous Hartog's Kugelsatz, the theorem of Cartan-Thullen, and Bochner's theorem. The book aims primarily at students starting to work in the field of complex analysis in several variables and instructors preparing a course. To that end, a lot of examples and supporting exercises are provided throughout the text. This second edition includes hints and suggestions for the solution of the provided exercises, with various degrees of support.
Author: Henri Cartan
Publisher: Courier Corporation
Published: 2013-04-22
Total Pages: 242
ISBN-13: 0486318672
DOWNLOAD EBOOKBasic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Author: Steven G. Krantz
Publisher: Springer
Published: 2017-09-20
Total Pages: 429
ISBN-13: 3319632310
DOWNLOAD EBOOKAuthored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and researchers in several applied disciplines will find the breadth and depth of the treatment of the subject highly useful.
Author: R. Michael Range
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 405
ISBN-13: 1475719183
DOWNLOAD EBOOKThe subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC", including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.
Author: H. Grauert
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 213
ISBN-13: 1461298741
DOWNLOAD EBOOKThe present book grew out of introductory lectures on the theory offunctions of several variables. Its intent is to make the reader familiar, by the discussion of examples and special cases, with the most important branches and methods of this theory, among them, e.g., the problems of holomorphic continuation, the algebraic treatment of power series, sheaf and cohomology theory, and the real methods which stem from elliptic partial differential equations. In the first chapter we begin with the definition of holomorphic functions of several variables, their representation by the Cauchy integral, and their power series expansion on Reinhardt domains. It turns out that, in l:ontrast ~ 2 there exist domains G, G c en to the theory of a single variable, for n with G c G and G "# G such that each function holomorphic in G has a continuation on G. Domains G for which such a G does not exist are called domains of holomorphy. In Chapter 2 we give several characterizations of these domains of holomorphy (theorem of Cartan-Thullen, Levi's problem). We finally construct the holomorphic hull H(G} for each domain G, that is the largest (not necessarily schlicht) domain over en into which each function holomorphic on G can be continued.
Author: Jiri Lebl
Publisher: Lulu.com
Published: 2016-05-05
Total Pages: 142
ISBN-13: 1365095576
DOWNLOAD EBOOKThis book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.
Author: Pierre Lelong
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 283
ISBN-13: 3642703445
DOWNLOAD EBOOKI - Entire functions of several complex variables constitute an important and original chapter in complex analysis. The study is often motivated by certain applications to specific problems in other areas of mathematics: partial differential equations via the Fourier-Laplace transformation and convolution operators, analytic number theory and problems of transcen dence, or approximation theory, just to name a few. What is important for these applications is to find solutions which satisfy certain growth conditions. The specific problem defines inherently a growth scale, and one seeks a solution of the problem which satisfies certain growth conditions on this scale, and sometimes solutions of minimal asymp totic growth or optimal solutions in some sense. For one complex variable the study of solutions with growth conditions forms the core of the classical theory of entire functions and, historically, the relationship between the number of zeros of an entire function f(z) of one complex variable and the growth of If I (or equivalently log If I) was the first example of a systematic study of growth conditions in a general setting. Problems with growth conditions on the solutions demand much more precise information than existence theorems. The correspondence between two scales of growth can be interpreted often as a correspondence between families of bounded sets in certain Frechet spaces. However, for applications it is of utmost importance to develop precise and explicit representations of the solutions.
Author: Steven George Krantz
Publisher: American Mathematical Soc.
Published: 2001
Total Pages: 586
ISBN-13: 0821827243
DOWNLOAD EBOOKEmphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.