Complex Analysis and Dynamical Systems IV

Complex Analysis and Dynamical Systems IV

Author: Mark Lʹvovich Agranovskiĭ

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 346

ISBN-13: 0821851969

DOWNLOAD EBOOK

The papers in this volume cover a wide variety of topics in the geometric theory of functions of one and several complex variables, including univalent functions, conformal and quasiconformal mappings, and dynamics in infinite-dimensional spaces. In addition, there are several articles dealing with various aspects of Lie groups, control theory, and optimization. Taken together, the articles provide the reader with a panorama of activity in complex analysis and quasiconformal mappings, drawn by a number of leading figures in the field. The companion volume (Contemporary Mathematics, Volume 554) is devoted to general relativity, geometry, and PDE.


Dynamical Systems IV

Dynamical Systems IV

Author: V.I. Arnol'd

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 291

ISBN-13: 3662067935

DOWNLOAD EBOOK

This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field.


Complex Analysis and Dynamical Systems

Complex Analysis and Dynamical Systems

Author: Mark Agranovsky

Publisher: Birkhäuser

Published: 2018-01-31

Total Pages: 373

ISBN-13: 3319701541

DOWNLOAD EBOOK

This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.


Complex Analysis and Dynamical Systems VI

Complex Analysis and Dynamical Systems VI

Author: Lawrence Zalcman

Publisher: American Mathematical Soc.

Published: 2016-05-19

Total Pages: 354

ISBN-13: 1470417030

DOWNLOAD EBOOK

This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19–24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers range over a wide variety of topics in complex analysis, quasiconformal mappings, and complex dynamics. Taken together, the articles provide the reader with a panorama of activity in these areas, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 653) is devoted to partial differential equations, differential geometry, and radon transforms.


Complex Analysis and Dynamical Systems VI

Complex Analysis and Dynamical Systems VI

Author: Matania Ben-Artzi

Publisher: American Mathematical Soc.

Published: 2015-12-03

Total Pages: 352

ISBN-13: 1470416530

DOWNLOAD EBOOK

This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19-24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers in this volume range over a wide variety of topics in Partial Differential Equations, Differential Geometry, and the Radon Transform. Taken together, the articles collected here provide the reader with a panorama of activity in partial differential equations and general relativity, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 667) is devoted to complex analysis, quasiconformal mappings, and complex dynamics. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).


Complex Analysis and Dynamical Systems V

Complex Analysis and Dynamical Systems V

Author: Mark Lʹvovich Agranovskiĭ

Publisher: American Mathematical Soc.

Published: 2013-06-03

Total Pages: 337

ISBN-13: 0821890247

DOWNLOAD EBOOK

This volume contains the proceedings of the Fifth International Conference on Complex Analysis and Dynamical Systems, held from May 22-27, 2011, in Akko (Acre), Israel. The papers cover a wide variety of topics in complex analysis and partial differential


Complex Analysis and Dynamical Systems VII

Complex Analysis and Dynamical Systems VII

Author: Mark L. Agranovsky

Publisher: American Mathematical Soc.

Published: 2017

Total Pages: 314

ISBN-13: 1470429616

DOWNLOAD EBOOK

A co-publication of the AMS and Bar-Ilan University This volume contains the proceedings of the Seventh International Conference on Complex Analysis and Dynamical Systems, held from May 10–15, 2015, in Nahariya, Israel. The papers in this volume range over a wide variety of topics in the interaction between various branches of mathematical analysis. Taken together, the articles collected here provide the reader with a panorama of activity in complex analysis, geometry, harmonic analysis, and partial differential equations, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis.


Several Complex Variables IV

Several Complex Variables IV

Author: Semen G. Gindikin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 257

ISBN-13: 3642612636

DOWNLOAD EBOOK

This volume of the EMS contains four survey articles on analytic spaces. They are excellent introductions to each respective area. Starting from basic principles in several complex variables each article stretches out to current trends in research. Graduate students and researchers will find a useful addition in the extensive bibliography at the end of each article.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.