Completion Detection in Asynchronous Circuits

Completion Detection in Asynchronous Circuits

Author: Pallavi Srivastava

Publisher: Springer Nature

Published: 2022-11-08

Total Pages: 129

ISBN-13: 3031183975

DOWNLOAD EBOOK

This book is intended for designers with experience in traditional (clocked) circuit design, seeking information about asynchronous circuit design, in order to determine if it would be advantageous to adopt asynchronous methodologies in their next design project. The author introduces a generic approach for implementing a deterministic completion detection scheme for asynchronous bundled data circuits that incorporates a data-dependent computational process, taking advantage of the average-case delay. The author validates the architecture using a barrel shifter, as shifting is the basic operation required by all the processors. The generic architecture proposed in this book for a deterministic completion detection scheme for bundled data circuits will facilitate researchers in considering the asynchronous design style for developing digital circuits.


Completion Detection in Asynchronous Circuits

Completion Detection in Asynchronous Circuits

Author: Pallavi Srivastava

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9783031183980

DOWNLOAD EBOOK

This book is intended for designers with experience in traditional (clocked) circuit design, seeking information about asynchronous circuit design, in order to determine if it would be advantageous to adopt asynchronous methodologies in their next design project. The author introduces a generic approach for implementing a deterministic completion detection scheme for asynchronous bundled data circuits that incorporates a data-dependent computational process, taking advantage of the average-case delay. The author validates the architecture using a barrel shifter, as shifting is the basic operation required by all the processors. The generic architecture proposed in this book for a deterministic completion detection scheme for bundled data circuits will facilitate researchers in considering the asynchronous design style for developing digital circuits. Analyzes circuit design techniques in the context of timing constraints; Develops a generic, deterministic completion detection scheme for asynchronous circuits using bundled data protocol; Demonstrates a single-precision, asynchronous bundled data barrel shifter to validate the completion detection scheme.


Asynchronous Circuit Design

Asynchronous Circuit Design

Author: Chris J. Myers

Publisher: John Wiley & Sons

Published: 2004-04-05

Total Pages: 424

ISBN-13: 0471464120

DOWNLOAD EBOOK

With asynchronous circuit design becoming a powerful tool in thedevelopment of new digital systems, circuit designers are expectedto have asynchronous design skills and be able to leverage them toreduce power consumption and increase system speed. This book walksreaders through all of the different methodologies of asynchronouscircuit design, emphasizing practical techniques and real-worldapplications instead of theoretical simulation. The only guide ofits kind, it also features an ftp site complete with supportmaterials. Market: Electrical Engineers, Computer Scientists, DeviceDesigners, and Developers in industry. An Instructor Support FTP site is available from the Wileyeditorial department.


Logic Synthesis for Asynchronous Controllers and Interfaces

Logic Synthesis for Asynchronous Controllers and Interfaces

Author: J. Cortadella

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 279

ISBN-13: 3642559891

DOWNLOAD EBOOK

This book is the result of a long friendship, of a broad international co operation, and of a bold dream. It is the summary of work carried out by the authors, and several other wonderful people, during more than 15 years, across 3 continents, in the course of countless meetings, workshops and discus sions. It shows that neither language nor distance can be an obstacle to close scientific cooperation, when there is unity of goals and true collaboration. When we started, we had very different approaches to handling the mys terious, almost magical world of asynchronous circuits. Some were more theo retical, some were closer to physical reality, some were driven mostly by design needs. In the end, we all shared the same belief that true Electronic Design Automation research must be solidly grounded in formal models, practically minded to avoid excessive complexity, and tested "in the field" in the form of experimental tools. The results are this book, and the CAD tool petrify. The latter can be downloaded and tried by anybody bold (or desperate) enough to tread into the clockless (but not lawless) domain of small-scale asynchronicity. The URL is http://www.lsi. upc. esr j ordic/petrify. We believe that asynchronous circuits are a wonderful object, that aban dons some of the almost militaristic law and order that governs synchronous circuits, to improve in terms of simplicity, energy efficiency and performance.


Asynchronous Circuit Design for VLSI Signal Processing

Asynchronous Circuit Design for VLSI Signal Processing

Author: Teresa H. Meng

Publisher: Springer Science & Business Media

Published: 2011-06-27

Total Pages: 179

ISBN-13: 1461527945

DOWNLOAD EBOOK

Asynchronous Circuit Design for VLSI Signal Processing is a collection of research papers on recent advances in the area of specification, design and analysis of asynchronous circuits and systems. This interest in designing digital computing systems without a global clock is prompted by the ever growing difficulty in adopting global synchronization as the only efficient means to system timing. Asynchronous circuits and systems have long held interest for circuit designers and researchers alike because of the inherent challenge involved in designing these circuits, as well as developing design techniques for them. The frontier research in this area can be traced back to Huffman's publications `The Synthesis of Sequential Switching Circuits' in 1954 followed by Unger's book, `Asynchronous Sequential Switching Circuits' in 1969 where a theoretical foundation for handling logic hazards was established. In the last few years a growing number of researchers have joined force in unveiling the mystery of designing correct asynchronous circuits, and better yet, have produced several alternatives in automatic synthesis and verification of such circuits. This collection of research papers represents a balanced view of current research efforts in the design, synthesis and verification of asynchronous systems.


Emerging Topics in Hardware Security

Emerging Topics in Hardware Security

Author: Mark Tehranipoor

Publisher: Springer Nature

Published: 2021-04-30

Total Pages: 602

ISBN-13: 3030644480

DOWNLOAD EBOOK

This book provides an overview of emerging topics in the field of hardware security, such as artificial intelligence and quantum computing, and highlights how these technologies can be leveraged to secure hardware and assure electronics supply chains. The authors are experts in emerging technologies, traditional hardware design, and hardware security and trust. Readers will gain a comprehensive understanding of hardware security problems and how to overcome them through an efficient combination of conventional approaches and emerging technologies, enabling them to design secure, reliable, and trustworthy hardware.


Embedded Cryptographic Hardware

Embedded Cryptographic Hardware

Author: Nadia Nedjah

Publisher: Nova Publishers

Published: 2005

Total Pages: 282

ISBN-13: 9781594541452

DOWNLOAD EBOOK

Data security is an important requirement for almost all, if not all, information-oriented applications such as e-commerce, digital signature, secure Internet, etc. All these services use encrypted data. Cryptography is a milliner science that was the key to the secret of ancient Rome and a fundamental piece in the Second World War. Today, it is a star in the computation world. Several operating systems, data base systems or simple filling systems provide the user with cryptographic functions that allow controlled data scrambling. Modern cryptology, which is the basis of information security techniques, started in the late 1970's and developed in the 1980's. As communication networks were spreading deep into society, the need for secure communication greatly promoted cryptographic research. The need for fast but secure cryptographic systems is growing bigger. Therefore, dedicated hardware for cryptography is becoming a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, hardware implementations of cryptographic algorithms became cost-effective. The focus of this book is on all aspects of cryptographic hardware and embedded systems. This includes design, implementation and security of such systems. The content of this book is divided into four main parts, each of which is organised in three chapters, with the exception of the last one.


Algorithms for Synthesis and Testing of Asynchronous Circuits

Algorithms for Synthesis and Testing of Asynchronous Circuits

Author: Luciano Lavagno

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 353

ISBN-13: 1461532124

DOWNLOAD EBOOK

Since the second half of the 1980s asynchronous circuits have been the subject of a great deal of research following a period of relative oblivion. The lack of interest in asynchronous techniques was motivated by the progressive shift towards synchronous design techniques that had much more structure and were much easier to verify and synthesize. System design requirements made it impossible to eliminate totally the use of asynchronous circuits. Given the objective difficulty encountered by designers, the asynchronous components of electronic systems such as interfaces became a serious bottleneck in the design process. The use of new models and some theoretical breakthroughs made it possible to develop asynchronous design techniques that were reliable and effective. This book describes a variety of mathematical models and of algorithms that form the backbone and the body of a new design methodology for asyn chronous design. The book is intended for asynchronous hardware designers, for computer-aided tool experts, and for digital designers interested in ex ploring the possibility of designing asynchronous circuits. It requires a solid mathematical background in discrete event systems and algorithms. While the book has not been written as a textbook, nevertheless it could be used as a reference book in an advanced course in logic synthesis or asynchronous design.


Designing Asynchronous Circuits using NULL Convention Logic (NCL)

Designing Asynchronous Circuits using NULL Convention Logic (NCL)

Author: Scott Smith

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 86

ISBN-13: 3031798007

DOWNLOAD EBOOK

Designing Asynchronous Circuits using NULL Convention Logic (NCL) begins with an introduction to asynchronous (clockless) logic in general, and then focuses on delay-insensitive asynchronous logic design using the NCL paradigm. The book details design of input-complete and observable dual-rail and quad-rail combinational circuits, and then discusses implementation of sequential circuits, which require datapath feedback. Next, throughput optimization techniques are presented, including pipelining, embedding registration, early completion, and NULL cycle reduction. Subsequently, low-power design techniques, such as wavefront steering and Multi-Threshold CMOS (MTCMOS) for NCL, are discussed. The book culminates with a comprehensive design example of an optimized Greatest Common Divisor circuit. Readers should have prior knowledge of basic logic design concepts, such as Boolean algebra and Karnaugh maps. After studying this book, readers should have a good understanding of the differences between asynchronous and synchronous circuits, and should be able to design arbitrary NCL circuits, optimized for area, throughput, and power. Table of Contents: Introduction to Asynchronous Logic / Overview of NULL Convention Logic (NCL) / Combinational NCL Circuit Design / Sequential NCL Circuit Design / NCL Throughput Optimization / Low-Power NCL Design / Comprehensive NCL Design Example


Asynchronous On-Chip Networks and Fault-Tolerant Techniques

Asynchronous On-Chip Networks and Fault-Tolerant Techniques

Author: Wei Song

Publisher: CRC Press

Published: 2022-05-10

Total Pages: 381

ISBN-13: 1000578828

DOWNLOAD EBOOK

Asynchronous On-Chip Networks and Fault-Tolerant Techniques is the first comprehensive study of fault-tolerance and fault-caused deadlock effects in asynchronous on-chip networks, aiming to overcome these drawbacks and ensure greater reliability of applications. As a promising alternative to the widely used synchronous on-chip networks for multicore processors, asynchronous on-chip networks can be vulnerable to faults even if they can deliver the same performance with much lower energy and area compared with their synchronous counterparts – faults can not only corrupt data transmission but also cause a unique type of deadlock. By adopting a new redundant code along with a dynamic fault detection and recovery scheme, the authors demonstrate that asynchronous on-chip networks can be efficiently hardened to tolerate both transient and permanent faults and overcome fault-caused deadlocks. This book will serve as an essential guide for researchers and students studying interconnection networks, fault-tolerant computing, asynchronous system design, circuit design and on-chip networking, as well as for professionals interested in designing fault-tolerant and high-throughput asynchronous circuits.